Switch to: References

Citations of:

An Introduction to Quantum Computing

Oxford, England: Oxford University Press UK (2006)

Add citations

You must login to add citations.
  1. Highlighting the Mechanism of the Quantum Speedup by Time-Symmetric and Relational Quantum Mechanics.Giuseppe Castagnoli - 2016 - Foundations of Physics 46 (3):360-381.
    Bob hides a ball in one of four drawers. Alice is to locate it. Classically she has to open up to three drawers, quantally just one. The fundamental reason for this quantum speedup is not known. The usual representation of the quantum algorithm is limited to the process of solving the problem. We extend it to the process of setting the problem. The number of the drawer with the ball becomes a unitary transformation of the random outcome of the preparation (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Completing the Physical Representation of Quantum Algorithms Provides a Quantitative Explanation of Their Computational Speedup.Giuseppe Castagnoli - 2018 - Foundations of Physics 48 (3):333-354.
    The usual representation of quantum algorithms, limited to the process of solving the problem, is physically incomplete. We complete it in three steps: extending the representation to the process of setting the problem, relativizing the extended representation to the problem solver to whom the problem setting must be concealed, and symmetrizing the relativized representation for time reversal to represent the reversibility of the underlying physical process. The third steps projects the input state of the representation, where the problem solver is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Fundamentals of whole brain emulation: State, transition and update representations.Randal A. Koene - 2012 - International Journal of Machine Consciousness 4 (01):5-21.
    Whole brain emulation aims to re-implement functions of a mind in another computational substrate with the precision needed to predict the natural development of active states in as much as the influence of random processes allows. Furthermore, brain emulation does not present a possible model of a function, but rather presents the actual implementation of that function, based on the details of the circuitry of a specific brain. We introduce a notation for the representations of mind state, mind transition functions (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the computational complexity of ethics: moral tractability for minds and machines.Jakob Stenseke - 2024 - Artificial Intelligence Review 57 (105):90.
    Why should moral philosophers, moral psychologists, and machine ethicists care about computational complexity? Debates on whether artificial intelligence (AI) can or should be used to solve problems in ethical domains have mainly been driven by what AI can or cannot do in terms of human capacities. In this paper, we tackle the problem from the other end by exploring what kind of moral machines are possible based on what computational systems can or cannot do. To do so, we analyze normative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Active Fault‐Tolerant Quantum Error Correction: The Curse of the Open System.Amit Hagar - 2009 - Philosophy of Science 76 (4):506-535.
    Relying on the universality of quantum mechanics and on recent results known as the “threshold theorems,” quantum information scientists deem the question of the feasibility of large‐scale, fault‐tolerant, and computationally superior quantum computers as purely technological. Reconstructing this question in statistical mechanical terms, this article suggests otherwise by questioning the physical significance of the threshold theorems. The skepticism it advances is neither too strong (hence is consistent with the universality of quantum mechanics) nor too weak (hence is independent of technological (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • To balance a pencil on its tip: On the passive approach to quantum error correction.Amit Hagar - manuscript
    Quantum computers are hypothetical quantum information processing (QIP) devices that allow one to store, manipulate, and extract information while harnessing quantum physics to solve various computational problems and do so putatively more efficiently than any known classical counterpart. Despite many ‘proofs of concept’ (Aharonov and Ben–Or 1996; Knill and Laflamme 1996; Knill et al. 1996; Knill et al. 1998) the key obstacle in realizing these powerful machines remains their scalability and susceptibility to noise: almost three decades after their conceptions, experimentalists (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation