Switch to: References

Add citations

You must login to add citations.
  1. Elementary Equivalence for Abelian-by-Finite and Nilpotent Groups.Francis Oger - 2001 - Journal of Symbolic Logic 66 (3):1471-1480.
    We show that two abelian-by-finite groups are elementarily equivalent if and only if they satisfy the same sentences with two alternations of quantifiers. We also prove that abelian-by-finite groups satisfy a quantifier elimination property. On the other hand, for each integer n, we give some examples of nilpotent groups which satisfy the same sentences with n alternations of quantifiers and do not satisfy the same sentences with n + 1 alternations of quantifiers.
    Download  
     
    Export citation  
     
    Bookmark  
  • The provably total functions of basic arithmetic and its extensions.Mohammad Ardeshir, Erfan Khaniki & Mohsen Shahriari - forthcoming - Archive for Mathematical Logic:1-53.
    We study Basic Arithmetic, $$\textsf{BA}$$ introduced by Ruitenburg (Notre Dame J Formal Logic 39:18–46, 1998). $$\textsf{BA}$$ is an arithmetical theory based on basic logic which is weaker than intuitionistic logic. We show that the class of the provably total recursive functions of $$\textsf{BA}$$ is a proper sub-class of the primitive recursive functions. Three extensions of $$\textsf{BA}$$, called $$\textsf{BA}+\mathsf U$$, $$\mathsf {BA_{\mathrm c}}$$ and $$\textsf{EBA}$$ are investigated with relation to their provably total recursive functions. It is shown that the provably total (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A direct method for simulating partial recursive functions by Diophantine equations.Yuri Matiyasevich - 1994 - Annals of Pure and Applied Logic 67 (1-3):325-348.
    A new proof is given of the celebrated theorem of M. Davis, H. Putnam and J. Robinson concerning exponential Diophantine representation of recursively enumerable predicates. The proof goes by induction on the defining scheme of a partial recursive function.
    Download  
     
    Export citation  
     
    Bookmark  
  • Pell equations and exponentiation in fragments of arithmetic.Paola D'Aquino - 1996 - Annals of Pure and Applied Logic 77 (1):1-34.
    We study the relative strength of the two axioms Every Pell equation has a nontrivial solution Exponentiation is total over weak fragments, and we show they are equivalent over IE1. We then define the graph of the exponential function using only existentially bounded quantifiers in the language of arithmetic expanded with the symbol #, where # = x[log2y]. We prove the recursion laws of exponentiation in the corresponding fragment.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Weak forms of the Regularity Principle in the presence of equation image.Charalampos Cornaros - 2013 - Mathematical Logic Quarterly 59 (1-2):84-100.
    We study the strength of weak forms of the Regularity Principle in the presence of equation image relative to other subsystems of equation image. In particular, the Bounded Weak Regularity Principle is formulated, and it is shown that when applied to E1 formulas, this principle is equivalent over equation image to equation image.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Independence results for weak systems of intuitionistic arithmetic.Morteza Moniri - 2003 - Mathematical Logic Quarterly 49 (3):250.
    This paper proves some independence results for weak fragments of Heyting arithmetic by using Kripke models. We present a necessary condition for linear Kripke models of arithmetical theories which are closed under the negative translation and use it to show that the union of the worlds in any linear Kripke model of HA satisfies PA. We construct a two-node PA-normal Kripke structure which does not force iΣ2. We prove i∀1 ⊬ i∃1, i∃1 ⊬ i∀1, iΠ2 ⊬ iΣ2 and iΣ2 ⊬ (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Parameterized Halting Problem, Truth and the Mrdp Theorem.Yijia Chen, Moritz Müller & Keita Yokoyama - forthcoming - Journal of Symbolic Logic:1-26.
    We study the parameterized complexity of the problem to decide whether a given natural number n satisfies a given $\Delta _0$ -formula $\varphi (x)$ ; the parameter is the size of $\varphi $. This parameterization focusses attention on instances where n is large compared to the size of $\varphi $. We show unconditionally that this problem does not belong to the parameterized analogue of $\mathsf {AC}^0$. From this we derive that certain natural upper bounds on the complexity of our parameterized (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Algebraic combinatorics in bounded induction.Joaquín Borrego-Díaz - 2021 - Annals of Pure and Applied Logic 172 (2):102885.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)A sharpened version of McAloon's theorem on initial segments of models of IΔ0.Paola D'Aquino - 1993 - Annals of Pure and Applied Logic 61 (1-2):49-62.
    A generalization is given of McAloon's result on initial segments ofmodels of GlΔ0, the fragment of Peano Arithmetic where the induction scheme is restricted to formulas with bounded quantifiers.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)A sharpened version of McAloon's theorem on initial segments of models of< i> IΔ_< sub> 0.Paola D'Aquino - 1993 - Annals of Pure and Applied Logic 61 (1):49-62.
    A generalization is given of McAloon's result on initial segments ofmodels of GlΔ0, the fragment of Peano Arithmetic where the induction scheme is restricted to formulas with bounded quantifiers.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Induction rules in bounded arithmetic.Emil Jeřábek - 2020 - Archive for Mathematical Logic 59 (3-4):461-501.
    We study variants of Buss’s theories of bounded arithmetic axiomatized by induction schemes disallowing the use of parameters, and closely related induction inference rules. We put particular emphasis on \ induction schemes, which were so far neglected in the literature. We present inclusions and conservation results between the systems and \ of a new form), results on numbers of instances of the axioms or rules, connections to reflection principles for quantified propositional calculi, and separations between the systems.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Solving Pell equations locally in models of IΔ0.Paola D'Aquino - 1998 - Journal of Symbolic Logic 63 (2):402-410.
    In [4] it is shown that only using exponentiation can one prove the existence of non trivial solutions of Pell equations in IΔ 0 . However, in this paper we will prove that any Pell equation has a non trivial solution modulo m for every m in IΔ 0.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Toward the Limits of the Tennenbaum Phenomenon.Paola D'Aquino - 1997 - Notre Dame Journal of Formal Logic 38 (1):81-92.
    We consider the theory and its weak fragments in the language of arithmetic expanded with the functional symbol . We prove that and its weak fragments, down to and , are subject to the Tennenbaum phenomenon with respect to , , and . For the last two theories it is still unknown if they may have nonstandard recursive models in the usual language of arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A note on exponentiation.Ch Cornaros & C. Dimitracopoulos - 1993 - Journal of Symbolic Logic 58 (1):64-71.
    We study the strength (over bounded induction) of axioms expressing particular cases of the Chinese Remainder Theorem with respect to the axiom ∀ x, y∃ z (z = xy).
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert's tenth problem for weak theories of arithmetic.Richard Kaye - 1993 - Annals of Pure and Applied Logic 61 (1-2):63-73.
    Hilbert's tenth problem for a theory T asks if there is an algorithm which decides for a given polynomial p() from [] whether p() has a root in some model of T. We examine some of the model-theoretic consequences that an affirmative answer would have in cases such as T = Open Induction and others, and apply these methods by providing a negative answer in the cases when T is some particular finite fragment of the weak theories IE1 or IU-1.
    Download  
     
    Export citation  
     
    Bookmark   1 citation