Switch to: References

Add citations

You must login to add citations.
  1. Classical and effective descriptive complexities of ω-powers.Olivier Finkel & Dominique Lecomte - 2009 - Annals of Pure and Applied Logic 160 (2):163-191.
    We prove that, for each countable ordinal ξ≥1, there exist some -complete ω-powers, and some -complete ω-powers, extending previous works on the topological complexity of ω-powers [O. Finkel, Topological properties of omega context free languages, Theoretical Computer Science 262 669–697; O. Finkel, Borel hierarchy and omega context free languages, Theoretical Computer Science 290 1385–1405; O. Finkel, An omega-power of a finitary language which is a borel set of infinite rank, Fundamenta informaticae 62 333–342; D. Lecomte, Sur les ensembles de phrases (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Topological complexity of locally finite ω-languages.Olivier Finkel - 2008 - Archive for Mathematical Logic 47 (6):625-651.
    Locally finite omega languages were introduced by Ressayre [Formal languages defined by the underlying structure of their words. J Symb Log 53(4):1009–1026, 1988]. These languages are defined by local sentences and extend ω-languages accepted by Büchi automata or defined by monadic second order sentences. We investigate their topological complexity. All locally finite ω-languages are analytic sets, the class LOC ω of locally finite ω-languages meets all finite levels of the Borel hierarchy and there exist some locally finite ω-languages which are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Decision Times of Infinite Computations.Merlin Carl, Philipp Schlicht & Philip Welch - 2022 - Notre Dame Journal of Formal Logic 63 (2).
    Download  
     
    Export citation  
     
    Bookmark  
  • Locally finite ω‐languages and effective analytic sets have the same topological complexity.Olivier Finkel - 2016 - Mathematical Logic Quarterly 62 (4-5):303-318.
    Local sentences and the formal languages they define were introduced by Ressayre in. We prove that locally finite ω‐languages and effective analytic sets have the same topological complexity: the Borel and Wadge hierarchies of the class of locally finite ω‐languages are equal to the Borel and Wadge hierarchies of the class of effective analytic sets. In particular, for each non‐null recursive ordinal there exist some ‐complete and some ‐complete locally finite ω‐languages, and the supremum of the set of Borel ranks (...)
    Download  
     
    Export citation  
     
    Bookmark