Switch to: References

Add citations

You must login to add citations.
  1. Keisler’s order via Boolean ultrapowers.Francesco Parente - 2020 - Archive for Mathematical Logic 60 (3):425-439.
    In this paper, we provide a new characterization of Keisler’s order in terms of saturation of Boolean ultrapowers. To do so, we apply and expand the framework of ‘separation of variables’ recently developed by Malliaris and Shelah. We also show that good ultrafilters on Boolean algebras are precisely the ones which capture the maximum class in Keisler’s order, answering a question posed by Benda in 1974.
    Download  
     
    Export citation  
     
    Bookmark  
  • Saturation of ultrapowers and Keisler's order.Saharon Shelah - 1972 - Annals of Mathematical Logic 4 (1):75.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Realization of φ -types and Keisler’s order.M. E. Malliaris - 2009 - Annals of Pure and Applied Logic 157 (2-3):220-224.
    We show that the analysis of Keisler’s order can be localized to the study of φ-types. Specifically, if is a regular ultrafilter on λ such that and M is a model whose theory is countable, then is λ+-saturated iff it realizes all φ-types of size λ.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Weakly minimal formulas: a global approach.Ludomir Newelski - 1990 - Annals of Pure and Applied Logic 46 (1):65-94.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Dividing Line Methodology: Model Theory Motivating Set Theory.John T. Baldwin - 2021 - Theoria 87 (2):361-393.
    We explore Shelah's model‐theoretic dividing line methodology. In particular, we discuss how problems in model theory motivated new techniques in model theory, for example classifying theories by their potential (consistently with Zermelo–Fraenkel set theory with the axiom of choice (ZFC)) spectrum of cardinals in which there is a universal model. Two other examples are the study (with Malliaris) of the Keisler order leading to a new ZFC result on cardinal invariants and attempts to clarify the “main gap” by reducing the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Independence, order, and the interaction of ultrafilters and theories.M. E. Malliaris - 2012 - Annals of Pure and Applied Logic 163 (11):1580-1595.
    We consider the question, of longstanding interest, of realizing types in regular ultrapowers. In particular, this is a question about the interaction of ultrafilters and theories, which is both coarse and subtle. By our prior work it suffices to consider types given by instances of a single formula. In this article, we analyze a class of formulas φ whose associated characteristic sequence of hypergraphs can be seen as describing realization of first- and second-order types in ultrapowers on one hand, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Big Ramsey degrees in ultraproducts of finite structures.Dana Bartošová, Mirna Džamonja, Rehana Patel & Lynn Scow - 2024 - Annals of Pure and Applied Logic 175 (7):103439.
    Download  
     
    Export citation  
     
    Bookmark  
  • Some simple theories from a Boolean algebra point of view.M. Malliaris & S. Shelah - 2024 - Annals of Pure and Applied Logic 175 (1):103345.
    Download  
     
    Export citation  
     
    Bookmark  
  • Atomic saturation of reduced powers.Saharon Shelah - 2021 - Mathematical Logic Quarterly 67 (1):18-42.
    Our aim was to try to generalize some theorems about the saturation of ultrapowers to reduced powers. Naturally, we deal with saturation for types consisting of atomic formulas. We succeed to generalize “the theory of dense linear order (or T with the strict order property) is maximal and so is any which is SOP3”, (where Δ consists of atomic or conjunction of atomic formulas). However, the theorem on “it is enough to deal with symmetric pre‐cuts” (so the theorem) cannot be (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On reduced products and filters.Mroslav Benda - 1972 - Annals of Mathematical Logic 4 (1):1.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Saturation and simple extensions of models of peano arithmetic.Matt Kaufmann & James H. Schmerl - 1984 - Annals of Pure and Applied Logic 27 (2):109-136.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Turing Degrees and Keisler’s Order.Maryanthe Malliaris & Saharon Shelah - 2024 - Journal of Symbolic Logic 89 (1):331-341.
    There is a Turing functional $\Phi $ taking $A^\prime $ to a theory $T_A$ whose complexity is exactly that of the jump of A, and which has the property that $A \leq _T B$ if and only if $T_A \trianglelefteq T_B$ in Keisler’s order. In fact, by more elaborate means and related theories, we may keep the complexity at the level of A without using the jump.
    Download  
     
    Export citation  
     
    Bookmark  
  • The metamathematics of random graphs.John T. Baldwin - 2006 - Annals of Pure and Applied Logic 143 (1-3):20-28.
    We explain and summarize the use of logic to provide a uniform perspective for studying limit laws on finite probability spaces. This work connects developments in stability theory, finite model theory, abstract model theory, and probability. We conclude by linking this context with work on the Urysohn space.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Stability, the f.c.p., and superstability; model theoretic properties of formulas in first order theory.Saharon Shelah - 1971 - Annals of Mathematical Logic 3 (3):271-362.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • The characteristic sequence of a first-order formula.M. E. Malliaris - 2010 - Journal of Symbolic Logic 75 (4):1415-1440.
    For a first-order formula φ(x; y) we introduce and study the characteristic sequence ⟨P n : n < ω⟩ of hypergraphs defined by P n (y₁…., y n ):= $(\exists x)\bigwedge _{i\leq n}\varphi (x;y_{i})$ . We show that combinatorial and classification theoretic properties of the characteristic sequence reflect classification theoretic properties of φ and vice versa. The main results are a characterization of NIP and of simplicity in terms of persistence of configurations in the characteristic sequence. Specifically, we show that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Finite diagrams stable in power.Saharon Shelah - 1970 - Annals of Mathematical Logic 2 (1):69-118.
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Edge distribution and density in the characteristic sequence.M. E. Malliaris - 2010 - Annals of Pure and Applied Logic 162 (1):1-19.
    The characteristic sequence of hypergraphs Pn:n<ω associated to a formula φ, introduced in Malliaris [5], is defined by Pn=i≤nφ. We continue the study of characteristic sequences, showing that graph-theoretic techniques, notably Szemerédi’s celebrated regularity lemma, can be naturally applied to the study of model-theoretic complexity via the characteristic sequence. Specifically, we relate classification-theoretic properties of φ and of the Pn to density between components in Szemerédi-regular decompositions of graphs in the characteristic sequence. In addition, we use Szemerédi regularity to calibrate (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A new look at interpretability and saturation.M. Malliaris & S. Shelah - 2019 - Annals of Pure and Applied Logic 170 (5):642-671.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Divide and Conquer: Dividing Lines and Universality.Saharon Shelah - 2021 - Theoria 87 (2):259-348.
    We discuss dividing lines (in model theory) and some test questions, mainly the universality spectrum. So there is much on conjectures, problems and old results, mainly of the author and also on some recent results.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Using ultrapowers to compare continuous structures.H. Jerome Keisler - forthcoming - Annals of Pure and Applied Logic.
    Download  
     
    Export citation  
     
    Bookmark