Switch to: References

Add citations

You must login to add citations.
  1. Transfering saturation, the finite cover property, and stability.John Baldwin, Rami Grossberg & Saharon Shelah - 1999 - Journal of Symbolic Logic 64 (2):678-684.
    $\underline{\text{Saturation is} (\mu, \kappa)-\text{transferable in} T}$ if and only if there is an expansion T 1 of T with ∣ T 1 ∣ = ∣ T ∣ such that if M is a μ-saturated model of T 1 and ∣ M ∣ ≥ κ then the reduct M ∣ L(T) is κ-saturated. We characterize theories which are superstable without f.c.p., or without f.c.p. as, respectively those where saturation is (ℵ 0 , λ)- transferable or (κ (T), λ)-transferable for all λ. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Hypergraph sequences as a tool for saturation of ultrapowers.M. E. Malliaris - 2012 - Journal of Symbolic Logic 77 (1):195-223.
    Let T 1 , T 2 be countable first-order theories, M i ⊨ T i , and ������ any regular ultrafilter on λ ≥ $\aleph_{0}$ . A longstanding open problem of Keisler asks when T 2 is more complex than T 1 , as measured by the fact that for any such λ, ������, if the ultrapower (M 2 ) λ /������ realizes all types over sets of size ≤ λ, then so must the ultrapower (M 1 ) λ /������. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Divide and Conquer: Dividing Lines and Universality.Saharon Shelah - 2021 - Theoria 87 (2):259-348.
    We discuss dividing lines (in model theory) and some test questions, mainly the universality spectrum. So there is much on conjectures, problems and old results, mainly of the author and also on some recent results.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Edge distribution and density in the characteristic sequence.M. E. Malliaris - 2010 - Annals of Pure and Applied Logic 162 (1):1-19.
    The characteristic sequence of hypergraphs Pn:n<ω associated to a formula φ, introduced in Malliaris [5], is defined by Pn=i≤nφ. We continue the study of characteristic sequences, showing that graph-theoretic techniques, notably Szemerédi’s celebrated regularity lemma, can be naturally applied to the study of model-theoretic complexity via the characteristic sequence. Specifically, we relate classification-theoretic properties of φ and of the Pn to density between components in Szemerédi-regular decompositions of graphs in the characteristic sequence. In addition, we use Szemerédi regularity to calibrate (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Keisler’s order via Boolean ultrapowers.Francesco Parente - 2020 - Archive for Mathematical Logic 60 (3):425-439.
    In this paper, we provide a new characterization of Keisler’s order in terms of saturation of Boolean ultrapowers. To do so, we apply and expand the framework of ‘separation of variables’ recently developed by Malliaris and Shelah. We also show that good ultrafilters on Boolean algebras are precisely the ones which capture the maximum class in Keisler’s order, answering a question posed by Benda in 1974.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Dividing Line Methodology: Model Theory Motivating Set Theory.John T. Baldwin - 2021 - Theoria 87 (2):361-393.
    We explore Shelah's model‐theoretic dividing line methodology. In particular, we discuss how problems in model theory motivated new techniques in model theory, for example classifying theories by their potential (consistently with Zermelo–Fraenkel set theory with the axiom of choice (ZFC)) spectrum of cardinals in which there is a universal model. Two other examples are the study (with Malliaris) of the Keisler order leading to a new ZFC result on cardinal invariants and attempts to clarify the “main gap” by reducing the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Independence, order, and the interaction of ultrafilters and theories.M. E. Malliaris - 2012 - Annals of Pure and Applied Logic 163 (11):1580-1595.
    We consider the question, of longstanding interest, of realizing types in regular ultrapowers. In particular, this is a question about the interaction of ultrafilters and theories, which is both coarse and subtle. By our prior work it suffices to consider types given by instances of a single formula. In this article, we analyze a class of formulas φ whose associated characteristic sequence of hypergraphs can be seen as describing realization of first- and second-order types in ultrapowers on one hand, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The characteristic sequence of a first-order formula.M. E. Malliaris - 2010 - Journal of Symbolic Logic 75 (4):1415-1440.
    For a first-order formula φ(x; y) we introduce and study the characteristic sequence ⟨P n : n < ω⟩ of hypergraphs defined by P n (y₁…., y n ):= $(\exists x)\bigwedge _{i\leq n}\varphi (x;y_{i})$ . We show that combinatorial and classification theoretic properties of the characteristic sequence reflect classification theoretic properties of φ and vice versa. The main results are a characterization of NIP and of simplicity in terms of persistence of configurations in the characteristic sequence. Specifically, we show that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations