Switch to: References

Add citations

You must login to add citations.
  1. Decisive creatures and large continuum.Jakob Kellner & Saharon Shelah - 2009 - Journal of Symbolic Logic 74 (1):73-104.
    For f, g $ \in \omega ^\omega $ let $c_{f,g}^\forall $ be the minimal number of uniform g-splitting trees (or: Slaloms) to cover the uniform f-splitting tree, i.e., for every branch v of the f-tree, one of the g-trees contains v. $c_{f,g}^\exists $ is the dual notion: For every branch v, one of the g-trees guesses v(m) infinitely often. It is consistent that $c_{f \in ,g \in }^\exists = c_{f \in ,g \in }^\forall = k_ \in $ for N₁ many (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Continuum many different things: Localisation, anti-localisation and Yorioka ideals.Miguel A. Cardona, Lukas Daniel Klausner & Diego A. Mejía - 2024 - Annals of Pure and Applied Logic 175 (7):103453.
    Download  
     
    Export citation  
     
    Bookmark  
  • Many different covering numbers of Yorioka’s ideals.Noboru Osuga & Shizuo Kamo - 2014 - Archive for Mathematical Logic 53 (1-2):43-56.
    For ${b \in {^{\omega}}{\omega}}$ , let ${\mathfrak{c}^{\exists}_{b, 1}}$ be the minimal number of functions (or slaloms with width 1) to catch every functions below b in infinitely many positions. In this paper, by using the technique of forcing, we construct a generic model in which there are many coefficients ${\mathfrak{c}^{\exists}_{{b_\alpha}, 1}}$ with pairwise different values. In particular, under the assumption that a weakly inaccessible cardinal exists, we can construct a generic model in which there are continuum many coefficients ${\mathfrak{c}^{\exists}_{{b_\alpha}, 1}}$ (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Creature forcing and large continuum: the joy of halving.Jakob Kellner & Saharon Shelah - 2012 - Archive for Mathematical Logic 51 (1-2):49-70.
    For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f,g\in\omega^\omega}$$\end{document} let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c^\forall_{f,g}}$$\end{document} be the minimal number of uniform g-splitting trees needed to cover the uniform f-splitting tree, i.e., for every branch ν of the f-tree, one of the g-trees contains ν. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c^\exists_{f,g}}$$\end{document} be the dual notion: For every branch ν, one of the g-trees guesses ν(m) infinitely often. We show that (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations