Switch to: References

Add citations

You must login to add citations.
  1. Varieties of Class-Theoretic Potentialism.Neil Barton & Kameryn J. Williams - 2024 - Review of Symbolic Logic 17 (1):272-304.
    We explain and explore class-theoretic potentialism—the view that one can always individuate more classes over a set-theoretic universe. We examine some motivations for class-theoretic potentialism, before proving some results concerning the relevant potentialist systems (in particular exhibiting failures of the $\mathsf {.2}$ and $\mathsf {.3}$ axioms). We then discuss the significance of these results for the different kinds of class-theoretic potentialists.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Elementary inductive dichotomy: Separation of open and clopen determinacies with infinite alternatives.Kentaro Sato - 2020 - Annals of Pure and Applied Logic 171 (3):102754.
    We introduce a new axiom called inductive dichotomy, a weak variant of the axiom of inductive definition, and analyze the relationships with other variants of inductive definition and with related axioms, in the general second order framework, including second order arithmetic, second order set theory and higher order arithmetic. By applying these results to the investigations on the determinacy axioms, we show the following. (i) Clopen determinacy is consistency-wise strictly weaker than open determinacy in these frameworks, except second order arithmetic; (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A few more dissimilarities between second-order arithmetic and set theory.Kentaro Fujimoto - 2022 - Archive for Mathematical Logic 62 (1):147-206.
    Second-order arithmetic and class theory are second-order theories of mathematical subjects of foundational importance, namely, arithmetic and set theory. Despite the similarity in appearance, there turned out to be significant mathematical dissimilarities between them. The present paper studies various principles in class theory, from such a comparative perspective between second-order arithmetic and class theory, and presents a few new dissimilarities between them.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bounded inductive dichotomy: separation of open and clopen determinacies with finite alternatives in constructive contexts.Kentaro Sato - 2022 - Archive for Mathematical Logic 61 (3):399-435.
    In his previous work, the author has introduced the axiom schema of inductive dichotomy, a weak variant of the axiom schema of inductive definition, and used this schema for elementary ) positive operators to separate open and clopen determinacies for those games in which two players make choices from infinitely many alternatives in various circumstances. Among the studies on variants of inductive definitions for bounded ) positive operators, the present article investigates inductive dichotomy for these operators, and applies it to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Deflationism beyond arithmetic.Kentaro Fujimoto - 2019 - Synthese 196 (3):1045-1069.
    The conservativeness argument poses a dilemma to deflationism about truth, according to which a deflationist theory of truth must be conservative but no adequate theory of truth is conservative. The debate on the conservativeness argument has so far been framed in a specific formal setting, where theories of truth are formulated over arithmetical base theories. I will argue that the appropriate formal setting for evaluating the conservativeness argument is provided not by theories of truth over arithmetic but by those over (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Finitist Axiomatic Truth.Sato Kentaro & Jan Walker - 2023 - Journal of Symbolic Logic 88 (1):22-73.
    Following the finitist’s rejection of the complete totality of the natural numbers, a finitist language allows only propositional connectives and bounded quantifiers in the formula-construction but not unbounded quantifiers. This is opposed to the currently standard framework, a first-order language. We conduct axiomatic studies on the notion of truth in the framework of finitist arithmetic in which at least smash function $\#$ is available. We propose finitist variants of Tarski ramified truth theories up to rank $\omega $, of Kripke–Feferman truth (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A new model construction by making a detour via intuitionistic theories IV: A closer connection between KPω and BI.Kentaro Sato - 2024 - Annals of Pure and Applied Logic 175 (7):103422.
    Download  
     
    Export citation  
     
    Bookmark  
  • A new model construction by making a detour via intuitionistic theories III: Ultrafinitistic proofs of conservations of Σ 1 1 collection. [REVIEW]Kentaro Sato - 2023 - Annals of Pure and Applied Logic 174 (3):103207.
    Download  
     
    Export citation  
     
    Bookmark   1 citation