Switch to: References

Add citations

You must login to add citations.
  1. Axioms in Mathematical Practice.Dirk Schlimm - 2013 - Philosophia Mathematica 21 (1):37-92.
    On the basis of a wide range of historical examples various features of axioms are discussed in relation to their use in mathematical practice. A very general framework for this discussion is provided, and it is argued that axioms can play many roles in mathematics and that viewing them as self-evident truths does not do justice to the ways in which mathematicians employ axioms. Possible origins of axioms and criteria for choosing axioms are also examined. The distinctions introduced aim at (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Pasch’s philosophy of mathematics.Dirk Schlimm - 2010 - Review of Symbolic Logic 3 (1):93-118.
    Moritz Pasch (1843ber neuere Geometrie (1882), in which he also clearly formulated the view that deductions must be independent from the meanings of the nonlogical terms involved. Pasch also presented in these lectures the main tenets of his philosophy of mathematics, which he continued to elaborate on throughout the rest of his life. This philosophy is quite unique in combining a deductivist methodology with a radically empiricist epistemology for mathematics. By taking into consideration publications from the entire span of Paschs (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Kant on the Nature of Logical Laws.Clinton Tolley - 2006 - Philosophical Topics 34 (1-2):371-407.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • (1 other version)The empty set, the Singleton, and the ordered pair.Akihiro Kanamori - 2003 - Bulletin of Symbolic Logic 9 (3):273-298.
    For the modern set theorist the empty set Ø, the singleton {a}, and the ordered pair 〈x, y〉 are at the beginning of the systematic, axiomatic development of set theory, both as a field of mathematics and as a unifying framework for ongoing mathematics. These notions are the simplest building locks in the abstract, generative conception of sets advanced by the initial axiomatization of Ernst Zermelo [1908a] and are quickly assimilated long before the complexities of Power Set, Replacement, and Choice (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The Genealogy of ‘∨’.Landon D. C. Elkind & Richard Zach - 2022 - Review of Symbolic Logic 16 (3):862-899.
    The use of the symbol ∨for disjunction in formal logic is ubiquitous. Where did it come from? The paper details the evolution of the symbol ∨ in its historical and logical context. Some sources say that disjunction in its use as connecting propositions or formulas was introduced by Peano; others suggest that it originated as an abbreviation of the Latin word for “or,” vel. We show that the origin of the symbol ∨ for disjunction can be traced to Whitehead and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Reconstructing the Unity of Mathematics circa 1900.David J. Stump - 1997 - Perspectives on Science 5 (3):383-417.
    Standard histories of mathematics and of analytic philosophy contend that work on the foundations of mathematics was motivated by a crisis such as the discovery of paradoxes in set theory or the discovery of non-Euclidean geometries. Recent scholarship, however, casts doubt on the standard histories, opening the way for consideration of an alternative motive for the study of the foundations of mathematics—unification. Work on foundations has shown that diverse mathematical practices could be integrated into a single framework of axiomatic systems (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hilbert's Metamathematical Problems and Their Solutions.Besim Karakadilar - 2008 - Dissertation, Boston University
    This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s axiomatic approach was guided primarily (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The mathematical import of zermelo's well-ordering theorem.Akihiro Kanamori - 1997 - Bulletin of Symbolic Logic 3 (3):281-311.
    Set theory, it has been contended, developed from its beginnings through a progression ofmathematicalmoves, despite being intertwined with pronounced metaphysical attitudes and exaggerated foundational claims that have been held on its behalf. In this paper, the seminal results of set theory are woven together in terms of a unifying mathematical motif, one whose transmutations serve to illuminate the historical development of the subject. The motif is foreshadowed in Cantor's diagonal proof, and emerges in the interstices of the inclusion vs. membership (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Russell, Frege, and the nature of implication.Judy Pelham - 1999 - Topoi 18 (2):175-184.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Dall' analisi matematica al calcolo geometrico: origini delle prime ricerche di logica di peano.Umberto Bottazzini - 1985 - History and Philosophy of Logic 6 (1):25-52.
    The Calcolo geometrico (1888) seems to have been a turning point in the scientific career of Giuseppe Peano (1858?1932) because with this book he started publishing in logic. Looking for motivations of his early interests in the field one is naturally led to investigate the background of that book. Besides his previous work in mathematical analysis, methods and results of some Italian mathematicians and?above all?the spread of Grassmann's theories in Italy played a significant role: this point seems to have been (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Technical online appendix to "A Structured Argumentation Framework for Modeling Debates in the Formal Sciences".Marcos Cramer & Jérémie Dauphin - unknown
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Peano’s structuralism and the birth of formal languages.Joan Bertran-San-Millán - 2022 - Synthese 200 (4):1-34.
    Recent historical studies have investigated the first proponents of methodological structuralism in late nineteenth-century mathematics. In this paper, I shall attempt to answer the question of whether Peano can be counted amongst the early structuralists. I shall focus on Peano’s understanding of the primitive notions and axioms of geometry and arithmetic. First, I shall argue that the undefinability of the primitive notions of geometry and arithmetic led Peano to the study of the relational features of the systems of objects that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege, Peano and the Interplay between Logic and Mathematics.Joan Bertran-San Millán - 2021 - Philosophia Scientiae 25 (1):15-34.
    In contemporary historical studies, Peano is usually included in the logical tradition pioneered by Frege. In this paper, I shall first demonstrate that Frege and Peano independently developed a similar way of using logic for the rigorous expression and proof of mathematical laws. However, I shall then suggest that Peano also used his mathematical logic in such a way that anticipated a formalisation of mathematical theories which was incompatible with Frege’s conception of logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Meaning and Aesthetic Judgment in Kant.Eli Friedlander - 2006 - Philosophical Topics 34 (1-2):21-34.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The problem of continuity and the origins of modernism: 1870–1913.William R. Everdell - 1988 - History of European Ideas 9 (5):531-552.
    Download  
     
    Export citation  
     
    Bookmark