Switch to: References

Add citations

You must login to add citations.
  1. Foundations for Mathematical Structuralism.Uri Nodelman & Edward N. Zalta - 2014 - Mind 123 (489):39-78.
    We investigate the form of mathematical structuralism that acknowledges the existence of structures and their distinctive structural elements. This form of structuralism has been subject to criticisms recently, and our view is that the problems raised are resolved by proper, mathematics-free theoretical foundations. Starting with an axiomatic theory of abstract objects, we identify a mathematical structure as an abstract object encoding the truths of a mathematical theory. From such foundations, we derive consequences that address the main questions and issues that (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Everything you always wanted to know about structural realism but were afraid to ask.Roman Frigg & Ioannis Votsis - 2011 - European Journal for Philosophy of Science 1 (2):227-276.
    Everything you always wanted to know about structural realism but were afraid to ask Content Type Journal Article Pages 227-276 DOI 10.1007/s13194-011-0025-7 Authors Roman Frigg, Department of Philosophy, Logic and Scientific Method, London School of Economics and Political Science, Houghton Street, London, WC2A 2AE UK Ioannis Votsis, Philosophisches Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, Geb. 23.21/04.86, 40225 Düsseldorf, Germany Journal European Journal for Philosophy of Science Online ISSN 1879-4920 Print ISSN 1879-4912 Journal Volume Volume 1 Journal Issue Volume 1, Number 2.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Weak Discernibility, Quantum Mechanics and the Generalist Picture.Matteo Morganti - 2008 - Facta Philosophica 10 (1/2):155--183.
    Saunders' recent arguments in favour of the weak discernibility of (certain) quantum particles seem to be grounded in the 'generalist' view that science only provides general descriptions of the worlIn this paper, I introduce the ‘generalist’ perspective and consider its possible justification and philosophical basis; and then look at the notion of weak discernibility. I expand on the criticisms formulated by Hawley (2006) and Dieks and Veerstegh (2008) and explain what I take to be the basic problem: that the properties (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Identity, indiscernibility, and Ante Rem structuralism: The tale of I and –I.Stewart Shapiro - 2008 - Philosophia Mathematica 16 (3):285-309.
    Some authors have claimed that ante rem structuralism has problems with structures that have indiscernible places. In response, I argue that there is no requirement that mathematical objects be individuated in a non-trivial way. Metaphysical principles and intuitions to the contrary do not stand up to ordinary mathematical practice, which presupposes an identity relation that, in a sense, cannot be defined. In complex analysis, the two square roots of –1 are indiscernible: anything true of one of them is true of (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Scientific structuralism: On the identity and diversity of objects in a structure.James Ladyman - 2007 - Aristotelian Society Supplementary Volume 81 (1):23–43.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Homotopy Type Theory and Structuralism.Teruji Thomas - 2014 - Dissertation, University of Oxford
    I explore the possibility of a structuralist interpretation of homotopy type theory (HoTT) as a foundation for mathematics. There are two main aspects to HoTT's structuralist credentials. First, it builds on categorical set theory (CST), of which the best-known variant is Lawvere's ETCS. I argue that CST has merit as a structuralist foundation, in that it ascribes only structural properties to typical mathematical objects. However, I also argue that this success depends on the adoption of a strict typing system which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What Are Structural Properties?†.Johannes Korbmacher & Georg Schiemer - 2018 - Philosophia Mathematica 26 (3):295-323.
    Informally, structural properties of mathematical objects are usually characterized in one of two ways: either as properties expressible purely in terms of the primitive relations of mathematical theories, or as the properties that hold of all structurally similar mathematical objects. We present two formal explications corresponding to these two informal characterizations of structural properties. Based on this, we discuss the relation between the two explications. As will be shown, the two characterizations do not determine the same class of mathematical properties. (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Grades of Discrimination: Indiscernibility, Symmetry, and Relativity.Tim Button - 2017 - Notre Dame Journal of Formal Logic 58 (4):527-553.
    There are several relations which may fall short of genuine identity, but which behave like identity in important respects. Such grades of discrimination have recently been the subject of much philosophical and technical discussion. This paper aims to complete their technical investigation. Grades of indiscernibility are defined in terms of satisfaction of certain first-order formulas. Grades of symmetry are defined in terms of symmetries on a structure. Both of these families of grades of discrimination have been studied in some detail. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)S cientific S tructuralism: O n the I dentity and D iversity of O bjects in a S tructure.James Ladyman - 2007 - Aristotelian Society Supplementary Volume 81 (1):23-43.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Haecceities and Mathematical Structuralism.Christopher Menzel - 2018 - Philosophia Mathematica 26 (1):84-111.
    Recent work in the philosophy of mathematics has suggested that mathematical structuralism is not committed to a strong form of the Identity of Indiscernibles (II). José Bermúdez demurs, and argues that a strong form of II can be warranted on structuralist grounds by countenancing identity properties, or haecceities, as legitimately structural. Typically, structuralists dismiss such properties as obviously non-structural. I will argue to the contrary that haecceities can be viewed as structural but that this concession does not warrant Bermúdez’s version (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)I—James Ladyman: On the Identity and Diversity of Objects in a Structure.James Ladyman - 2007 - Aristotelian Society Supplementary Volume 81 (1):23-43.
    The identity and diversity of individual objects may be grounded or ungrounded, and intrinsic or contextual. Intrinsic individuation can be grounded in haecceities, or absolute discernibility. Contextual individuation can be grounded in relations, but this is compatible with absolute, relative or weak discernibility. Contextual individuation is compatible with the denial of haecceitism, and this is more harmonious with science. Structuralism implies contextual individuation. In mathematics contextual individuation is in general primitive. In physics contextual individuation may be grounded in relations via (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Structuralism and Its Ontology.Marc Gasser - 2015 - Ergo: An Open Access Journal of Philosophy 2:1-26.
    A prominent version of mathematical structuralism holds that mathematical objects are at bottom nothing but "positions in structures," purely relational entities without any sort of nature independent of the structure to which they belong. Such an ontology is often presented as a response to Benacerraf's "multiple reductions" problem, or motivated on hermeneutic grounds, as a faithful representation of the discourse and practice of mathematics. In this paper I argue that there are serious difficulties with this kind of view: its proponents (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Identity and indiscernibility.Jeffrey Ketland - 2011 - Review of Symbolic Logic 4 (2):171-185.
    The notion of strict identity is sometimes given an explicit second-order definition: objects with all the same properties are identical. Here, a somewhat different problem is raised: Under what conditions is the identity relation on the domain of a structure first-order definable? A structure may have objects that are distinct, but indiscernible by the strongest means of discerning them given the language (the indiscernibility formula). Here a number of results concerning the indiscernibility formula, and the definability of identity, are collected (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Frege, the complex numbers, and the identity of indiscernibles.Wenzel Christian Helmut - 2010 - Logique Et Analyse 53 (209):51-60.
    There are mathematical structures with elements that cannot be distinguished by the properties they have within that structure. For instance within the field of complex numbers the two square roots of −1, i and −i, have the same algebraic properties in that field. So how do we distinguish between them? Imbedding the complex numbers in a bigger structure, the quaternions, allows us to algebraically tell them apart. But a similar problem appears for this larger structure. There seems to be always (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Discernibility by Symmetries.Davide Rizza - 2010 - Studia Logica 96 (2):175 - 192.
    In this paper I introduce a novel strategy to deal with the indiscernibility problem for ante rem structuralism. The ante rem structuralist takes the ontology of mathematics to consist of abstract systems of pure relata. Many of such systems are totally symmetrical, in the sense that all of their elements are relationally indiscernible, so the ante rem structuralist seems committed to positing indiscernible yet distinct relata. If she decides to identify them, she falls into mathematical inconsistency while, accepting their distinctness, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Ontic Structural Realism and the Principle of the Identity of Indiscernibles.Peter Ainsworth - 2011 - Erkenntnis 75 (1):67-84.
    Recently, there has been a debate as to whether or not the principle of the identity of indiscernibles (the PII) is compatible with quantum physics. It is also sometimes argued that the answer to this question has implications for the debate over the tenability of ontic structural realism (OSR). The central aim of this paper is to establish what relationship there is (if any) between the PII and OSR. It is argued that one common interpretation of OSR is undermined if (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Indistinguishable elements and mathematical structuralism.José Bermúdez - 2007 - Analysis 67 (2):112-116.
    The existence of structures with non-trivial authomorphisms (such as the automorphism of the field of complex numbers onto itself that swaps the two roots of – 1) has been held by Burgess and others to pose a serious difficulty for mathematical structuralism. This paper proposes a model-theoretic solution to the problem. It suggests that mathematical structuralists identify the “position” of an n-tuple in a mathematical structure with the type of that n-tuple in the expansion of the structure that has a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Remarks on the Theory of Quasi-sets.Steven French & Décio Krause - 2010 - Studia Logica 95 (1-2):101 - 124.
    Quasi-set theory has been proposed as a means of handling collections of indiscernible objects. Although the most direct application of the theory is quantum physics, it can be seen per se as a non-classical logic (a non-reflexive logic). In this paper we revise and correct some aspects of quasi-set theory as presented in [12], so as to avoid some misunderstandings and possible misinterpretations about the results achieved by the theory. Some further ideas with regard to quantum field theory are also (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Identity and Extensionality in Boffa Set Theory.Nuno Maia & Matteo Nizzardo - 2024 - Philosophia Mathematica 32 (1):115-123.
    Boffa non-well-founded set theory allows for several distinct sets equal to their respective singletons, the so-called ‘Quine atoms’. Rieger contends that this theory cannot be a faithful description of set-theoretic reality. He argues that, even after granting that there are non-well-founded sets, ‘the extensional nature of sets’ precludes numerically distinct Quine atoms. In this paper we uncover important similarities between Rieger’s argument and how non-rigid structures are conceived within mathematical structuralism. This opens the way for an objection against Rieger, whilst (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Non-Eliminative Structuralism. Unlabeled Graphs as a Case Study, Part B†.Hannes Leitgeb - 2021 - Philosophia Mathematica 29 (1):64-87.
    This is Part B of an article that defends non-eliminative structuralism about mathematics by means of a concrete case study: a theory of unlabeled graphs. Part A motivated an understanding of unlabeled graphs as structures sui generis and developed a corresponding axiomatic theory of unlabeled graphs. Part B turns to the philosophical interpretation and assessment of the theory: it points out how the theory avoids well-known problems concerning identity, objecthood, and reference that have been attributed to non-eliminative structuralism. The part (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Inferentialism and Structuralism: A Tale of Two Theories.Ryan Mark Nefdt - 2018 - Logique Et Analyse 61 (244):489-512.
    This paper aims to unite two seemingly disparate themes in the philosophy of mathematics and language respectively, namely ante rem structuralism and inferentialism. My analysis begins with describing both frameworks in accordance with their genesis in the work of Hilbert. I then draw comparisons between these philosophical views in terms of their similar motivations and similar objections to the referential orthodoxy. I specifically home in on two points of comparison, namely the role of norms and the relation of ontological dependence (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Criteria of identity and the hermeneutic goal of ante rem structuralism.Scott Normand - 2018 - Synthese 195 (5):2141-2153.
    The ante rem structuralist holds that places in ante rem structures are objects with determinate identity conditions, but he cannot justify this view by providing places with criteria of identity. The latest response to this problem holds that no criteria of identity are required because mathematical practice presupposes a primitive identity relation. This paper criticizes this appeal to mathematical practice. Ante rem structuralism interprets mathematics within the theory of universals, holding that mathematical objects are places in universals. The identity problem (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Identity and discernibility in philosophy and logic.James Ladyman, Øystein Linnebo & Richard Pettigrew - 2012 - Review of Symbolic Logic 5 (1):162-186.
    Questions about the relation between identity and discernibility are important both in philosophy and in model theory. We show how a philosophical question about identity and dis- cernibility can be ‘factorized’ into a philosophical question about the adequacy of a formal language to the description of the world, and a mathematical question about discernibility in this language. We provide formal definitions of various notions of discernibility and offer a complete classification of their logical relations. Some new and surprising facts are (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • No two entities without identity.Benjamin C. Jantzen - 2011 - Synthese 181 (3):433-450.
    In a naïve realist approach to reading an ontology off the models of a physical theory, the invariance of a given theory under permutations of its property-bearing objects entails the existence of distinct possible worlds from amongst which the theory cannot choose. A brand of Ontic Structural Realism attempts to avoid this consequence by denying that objects possess primitive identity, and thus worlds with property values permuted amongst those objects are really one and the same world. Assuming that any successful (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On discernibility in symmetric languages: the case of quantum particles.Tomasz Bigaj - 2020 - Synthese 198 (9):8485-8502.
    In this paper I consider the question of whether absolute discernibility is attainable in symmetric languages. Simon Saunders has proven that all facts expressible in first-order language with identity can be equivalently stated within its symmetric sublanguage. I use this result to show specifically how particles of the same type can be absolutely discerned in the permutation-invariant language of the quantum theory of many particles.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Rethinking Individuality in Quantum Mechanics.Nathan Moore - 2019 - Dissertation, University of Western Ontario
    One recent debate in philosophy of physics has centered whether quantum particles are individuals or not. The received view is that particles are not individuals and the standard methodology is to approach the question via the structure of quantum theory. I challenge both the received view and the standard methodology. I contend not only that the structure of quantum theory is not the right place to look for conditions of individuality that quantum particles may or may not satisfy, but also (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Is Identity Really so Fundamental?Décio Krause & Jonas R. Becker Arenhart - 2019 - Foundations of Science 24 (1):51-71.
    We critically examine the claim that identity is a fundamental concept. According to those putting forward this thesis, there are four related reasons that can be called upon to ground the fundamental character of identity: identity is presupposed in every conceptual system; identity is required to characterize individuality; identity cannot be defined; the intelligibility of quantification requires identity. We address each of these points and argue that none of them advances compelling reasons to hold that identity is fundamental; in fact, (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On Kinds of Indiscernibility in Logic and Metaphysics.Adam Caulton & Jeremy Butterfield - 2012 - British Journal for the Philosophy of Science 63 (1):27-84.
    Using the Hilbert-Bernays account as a spring-board, we first define four ways in which two objects can be discerned from one another, using the non-logical vocabulary of the language concerned. Because of our use of the Hilbert-Bernays account, these definitions are in terms of the syntax of the language. But we also relate our definitions to the idea of permutations on the domain of quantification, and their being symmetries. These relations turn out to be subtle---some natural conjectures about them are (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Criteria of identity and structuralist ontology.Hannes Leitgib & James Ladyman - 2008 - Philosophia Mathematica 16 (3):388-396.
    In discussions about whether the Principle of the Identity of Indiscernibles is compatible with structuralist ontologies of mathematics, it is usually assumed that individual objects are subject to criteria of identity which somehow account for the identity of the individuals. Much of this debate concerns structures that admit of non-trivial automorphisms. We consider cases from graph theory that violate even weak formulations of PII. We argue that (i) the identity or difference of places in a structure is not to be (...)
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • Sobre uma fundamentação não reflexiva da mecânica quântica.Newton Carneiro Affonso da Costa, Décio Krause, Jonas Rafael Becker Arenhart & Jaison Schinaider - 2012 - Scientiae Studia 10 (1):71-104.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Many entities, no identity.Jonas R. Becker Arenhart - 2012 - Synthese 187 (2):801-812.
    The aim of this paper is to argue that some objections raised by Jantzen (Synthese, 2010 ) against the separation of the concepts of ‘counting’ and ‘identity’ are misled. We present a definition of counting in the context of quasi-set theory requiring neither the labeling nor the identity and individuality of the counted entities. We argue that, contrary to what Jantzen poses, there are no problems with the technical development of this kind of definition. As a result of being able (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Mathematical structuralism today.Julian C. Cole - 2010 - Philosophy Compass 5 (8):689-699.
    Two topics figure prominently in recent discussions of mathematical structuralism: challenges to the purported metaphysical insight provided by sui generis structuralism and the significance of category theory for understanding and articulating mathematical structuralism. This article presents an overview of central themes related to these topics.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Ante rem structuralism and the semantics of instantial terms.Sofía Meléndez Gutiérrez - 2022 - Synthese 200 (5):1-17.
    Ante rem structures were posited as the subject matter of mathematics in order to resolve a problem of referential indeterminacy within mathematical discourse. Nevertheless, ante rem structuralists are inevitably committed to the existence of indiscernible entities, and this commitment produces an exactly analogous problem. If it cannot be sorted out, then the postulation of ante rem structures is futile. In a recent paper, Stewart Shapiro argued that the problem may be solved by analysing some of the singular terms of mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Say My Name. An Objection to Ante Rem Structuralism.Tim Räz - 2015 - Philosophia Mathematica 23 (1):116-125.
    I raise an objection to Stewart Shapiro's version of ante rem structuralism: I show that it is in conflict with mathematical practice. Shapiro introduced so-called ‘finite cardinal structures’ to illustrate features of ante rem structuralism. I establish that these structures have a well-known counterpart in mathematics, but this counterpart is incompatible with ante rem structuralism. Furthermore, there is a good reason why, according to mathematical practice, these structures do not behave as conceived by Shapiro's ante rem structuralism.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Logical aspects of quantum (non-)individuality.Décio Krause - 2010 - Foundations of Science 15 (1):79-94.
    In this paper I consider some logical and mathematical aspects of the discussion of the identity and individuality of quantum entities. I shall point out that for some aspects of the discussion, the logical basis cannot be put aside; on the contrary, it leads us to unavoidable conclusions which may have consequences in how we articulate certain concepts related to quantum theory. Behind the discussion, there is a general argument which suggests the possibility of a metaphysics of non-individuals, based on (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Relationism and the Problem of Order.Michele Paolini Paoletti - 2023 - Acta Analytica 38 (2):245-273.
    Relationism holds that objects entirely depend on relations or that they must be eliminated in favour of the latter. In this article, I raise a problem for relationism. I argue that relationism cannot account for the order in which non-symmetrical relations apply to their relata. In Section 1, I introduce some concepts in the ontology of relations and define relationism. In Section 2, I present the Problem of Order for non-symmetrical relations, after distinguishing it from the Problem of Differential Application. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An “I” for an I: Singular terms, uniqueness, and reference.Stewart Shapiro - 2012 - Review of Symbolic Logic 5 (3):380-415.
    There is an interesting logical/semantic issue with some mathematical languages and theories. In the language of (pure) complex analysis, the two square roots of i’ manage to pick out a unique object? This is perhaps the most prominent example of the phenomenon, but there are some others. The issue is related to matters concerning the use of definite descriptions and singular pronouns, such as donkey anaphora and the problem of indistinguishable participants. Taking a cue from some work in linguistics and (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Structuralism and Meta-Mathematics.Simon Friederich - 2010 - Erkenntnis 73 (1):67 - 81.
    The debate on structuralism in the philosophy of mathematics has brought into focus a question about the status of meta-mathematics. It has been raised by Shapiro (2005), where he compares the ongoing discussion on structuralism in category theory to the Frege-Hilbert controversy on axiomatic systems. Shapiro outlines an answer according to which meta-mathematics is understood in structural terms and one according to which it is not. He finds both options viable and does not seem to prefer one over the other. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • An algebraic treatment of the Leibniz law.Piotr Wilczek - unknown
    This paper is an attempt of algebraization of the Leibniz Law for classical objects. In the future the above investigations will be extended to the domain of quantum objects.
    Download  
     
    Export citation  
     
    Bookmark