Switch to: References

Add citations

You must login to add citations.
  1. Σ 1 0 and Π 1 0 equivalence structures.Douglas Cenzer, Valentina Harizanov & Jeffrey B. Remmel - 2011 - Annals of Pure and Applied Logic 162 (7):490-503.
    We study computability theoretic properties of and equivalence structures and how they differ from computable equivalence structures or equivalence structures that belong to the Ershov difference hierarchy. Our investigation includes the complexity of isomorphisms between equivalence structures and between equivalence structures.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Σ1 1 equivalence relations over the natural numbers.Ekaterina B. Fokina & Sy-David Friedman - 2012 - Mathematical Logic Quarterly 58 (1-2):113-124.
    We study the structure of Σ11 equivalence relations on hyperarithmetical subsets of ω under reducibilities given by hyperarithmetical or computable functions, called h-reducibility and FF-reducibility, respectively. We show that the structure is rich even when one fixes the number of properly equation imagei.e., Σ11 but not equation image equivalence classes. We also show the existence of incomparable Σ11 equivalence relations that are complete as subsets of ω × ω with respect to the corresponding reducibility on sets. We study complete Σ11 (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Isomorphism relations on computable structures.Ekaterina B. Fokina, Sy-David Friedman, Valentina Harizanov, Julia F. Knight, Charles Mccoy & Antonio Montalbán - 2012 - Journal of Symbolic Logic 77 (1):122-132.
    We study the complexity of the isomorphism relation on classes of computable structures. We use the notion of FF-reducibility introduced in [9] to show completeness of the isomorphism relation on many familiar classes in the context of all ${\mathrm{\Sigma }}_{1}^{1}$ equivalence relations on hyperarithmetical subsets of ω.
    Download  
     
    Export citation  
     
    Bookmark   13 citations