Switch to: References

Add citations

You must login to add citations.
  1. Mental states follow quantum mechanics during perception and cognition of ambiguous figures.Elio Conte - 2009 - In Krzysztof Stefanski (ed.), Open Systems and Information Dynamics. World scientific publishing company. pp. 1-17.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Error, Free Will, and Freedom.Kathleen Touchstone - 2022 - Journal of Ayn Rand Studies 22 (2):214-250.
    ABSTRACT This essay examines error and both external freedom and internal freedom. There is no external freedom (the latitude to choose) without internal freedom (the capacity to choose). Concerning external freedom, it suggests that errors serve as a derivative basis for natural rights. Concerning internal freedom, it overviews four groundbreaking papers from the 1990s by Stephen Boydstun, who suggested that there is no external freedom without internal indeterminism—specifically that associated with quantum probabilities related to neuronal control processes. Also reviewed is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Versus Classical Entanglement: Eliminating the Issue of Quantum Nonlocality.Andrei Khrennikov - 2020 - Foundations of Physics 50 (12):1762-1780.
    We analyze the interrelation of quantum and classical entanglement. The latter notion is widely used in classical optic simulation of some quantum-like features of light. We criticize the common interpretation that “quantum nonlocality” is the basic factor differing quantum and classical realizations of entanglement. Instead, we point to the breakthrough Grangier et al. experiment on coincidence detection which was done in 1986 and played the crucial role in rejection of classical field models in favor of quantum mechanics. Classical entanglement sources (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Closing the door on quantum nonlocality.Marian Kupczynski - 2018 - Entropy 363347 (363347):17.
    Bell-type inequalities are proven using oversimplified probabilistic models and/or counterfactual definiteness (CFD). If setting-dependent variables describing measuring instruments are correctly introduced, none of these inequalities may be proven. In spite of this, a belief in a mysterious quantum nonlocality is not fading. Computer simulations of Bell tests allow people to study the different ways in which the experimental data might have been created. They also allow for the generation of various counterfactual experiments’ outcomes, such as repeated or simultaneous measurements performed (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Contextuality in Three Types of Quantum-Mechanical Systems.Ehtibar N. Dzhafarov, Janne V. Kujala & Jan-Åke Larsson - 2015 - Foundations of Physics 45 (7):762-782.
    We present a formal theory of contextuality for a set of random variables grouped into different subsets corresponding to different, mutually incompatible conditions. Within each context the random variables are jointly distributed, but across different contexts they are stochastically unrelated. The theory of contextuality is based on the analysis of the extent to which some of these random variables can be viewed as preserving their identity across different contexts when one considers all possible joint distributions imposed on the entire set (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Quantum-Like Model for Decision Making Process in Two Players Game: A Non-Kolmogorovian Model.Masanari Asano, Masanori Ohya & Andrei Khrennikov - 2011 - Foundations of Physics 41 (3):538-548.
    In experiments of games, players frequently make choices which are regarded as irrational in game theory. In papers of Khrennikov (Information Dynamics in Cognitive, Psychological and Anomalous Phenomena. Fundamental Theories of Physics, Kluwer Academic, Norwell, 2004; Fuzzy Sets Syst. 155:4–17, 2005; Biosystems 84:225–241, 2006; Found. Phys. 35(10):1655–1693, 2005; in QP-PQ Quantum Probability and White Noise Analysis, vol. XXIV, pp. 105–117, 2009), it was pointed out that statistics collected in such the experiments have “quantum-like” properties, which can not be explained in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Generalized Observables, Bell’s Inequalities and Mixtures in the ESR Model for QM.Claudio Garola & Sandro Sozzo - 2011 - Foundations of Physics 41 (3):424-449.
    The extended semantic realism (ESR) model proposes a new theoretical perspective which embodies the mathematical formalism of standard (Hilbert space) quantum mechanics (QM) into a noncontextual framework, reinterpreting quantum probabilities as conditional instead of absolute. We provide in this review an overall view on the present status of our research on this topic. We attain in a new, shortened way a mathematical representation of the generalized observables introduced by the ESR model and a generalization of the projection postulate of elementary (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • From a 1D Completed Scattering and Double Slit Diffraction to the Quantum-Classical Problem for Isolated Systems.Nikolay L. Chuprikov - 2011 - Foundations of Physics 41 (9):1502-1520.
    By probability theory the probability space to underlie the set of statistical data described by the squared modulus of a coherent superposition of microscopically distinct (sub)states (CSMDS) is non-Kolmogorovian and, thus, such data are mutually incompatible. For us this fact means that the squared modulus of a CSMDS cannot be unambiguously interpreted as the probability density and quantum mechanics itself, with its current approach to CSMDSs, does not allow a correct statistical interpretation. By the example of a 1D completed scattering (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Complementarity of Mental Observables.Irina Basieva & Andrei Khrennikov - 2014 - Topics in Cognitive Science 6 (1):74-78.
    The aim of this note is to complete the discussion on the possibility of creation of quantum-like (QL) representation for the question order effect which was presented by Wang and Busemeyer (2013). We analyze the role of a fundamental feature of mental operators (given, e.g., by questions), namely, their complementarity.
    Download  
     
    Export citation  
     
    Bookmark