Switch to: References

Add citations

You must login to add citations.
  1. A standard model of Peano Arithmetic with no conservative elementary extension.Ali Enayat - 2008 - Annals of Pure and Applied Logic 156 (2):308-318.
    The principal result of this paper answers a long-standing question in the model theory of arithmetic [R. Kossak, J. Schmerl, The Structure of Models of Peano Arithmetic, Oxford University Press, 2006, Question 7] by showing that there exists an uncountable arithmetically closed family of subsets of the set ω of natural numbers such that the expansion of the standard model of Peano arithmetic has no conservative elementary extension, i.e., for any elementary extension of , there is a subset of ω* (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Arithmetically Saturated Models of Arithmetic.Roman Kossak & James H. Schmerl - 1995 - Notre Dame Journal of Formal Logic 36 (4):531-546.
    The paper presents an outline of the general theory of countable arithmetically saturated models of PA and some of its applications. We consider questions concerning the automorphism group of a countable recursively saturated model of PA. We prove new results concerning fixed point sets, open subgroups, and the cofinality of the automorphism group. We also prove that the standard system of a countable arithmetically saturated model of PA is determined by the lattice of its elementary substructures.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Four Problems Concerning Recursively Saturated Models of Arithmetic.Roman Kossak - 1995 - Notre Dame Journal of Formal Logic 36 (4):519-530.
    The paper presents four open problems concerning recursively saturated models of Peano Arithmetic. One problems concerns a possible converse to Tarski's undefinability of truth theorem. The other concern elementary cuts in countable recursively saturated models, extending automorphisms of countable recursively saturated models, and Jonsson models of PA. Some partial answers are given.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Ultrafilters in reverse mathematics.Henry Towsner - 2014 - Journal of Mathematical Logic 14 (1):1450001.
    We extend theories of reverse mathematics by a non-principal ultrafilter, and show that these are conservative extensions of the usual theories ACA0, ATR0, and [Formula: see text].
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A weakly definable type which is not definable.James H. Schmerl - 1993 - Archive for Mathematical Logic 32 (6):463-468.
    For each completion of Peano Arithmetic there is a weakly definable type which is not definable.
    Download  
     
    Export citation  
     
    Bookmark  
  • On maximal subgroups of the automorphism group of a countable recursively saturated model of PA.Roman Kossak, Henryk Kotlarski & James H. Schmerl - 1993 - Annals of Pure and Applied Logic 65 (2):125-148.
    We show that the stabilizer of an element a of a countable recursively saturated model of arithmetic M is a maximal subgroup of Aut iff the type of a is selective. This is a point of departure for a more detailed study of the relationship between pointwise and setwise stabilizers of certain subsets of M and the types of elements in those subsets. We also show that a complete type of PA is 2-indiscernible iff it is minimal in the sense (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Automorphism Groups of Arithmetically Saturated Models.Ermek S. Nurkhaidarov - 2006 - Journal of Symbolic Logic 71 (1):203 - 216.
    In this paper we study the automorphism groups of countable arithmetically saturated models of Peano Arithmetic. The automorphism groups of such structures form a rich class of permutation groups. When studying the automorphism group of a model, one is interested to what extent a model is recoverable from its automorphism group. Kossak-Schmerl [12] show that ifMis a countable, arithmetically saturated model of Peano Arithmetic, then Aut(M) codes SSy(M). Using that result they prove:Let M1. M2be countable arithmetically saturated models of Peano (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A note on standard systems and ultrafilters.Fredrik Engström - 2008 - Journal of Symbolic Logic 73 (3):824-830.
    Let (M, X) ⊨ ACA₀ be such that P X, the collection of all unbounded sets in X, admits a definable complete ultrafilter and let T be a theory extending first order arithmetic coded in X such that M thinks T is consistent. We prove that there is an end-extension N ⊨ T of M such that the subsets of M coded in N are precisely those in X. As a special case we get that any Scott set with a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Automorphisms of models of arithmetic: a unified view.Ali Enayat - 2007 - Annals of Pure and Applied Logic 145 (1):16-36.
    We develop the method of iterated ultrapower representation to provide a unified and perspicuous approach for building automorphisms of countable recursively saturated models of Peano arithmetic . In particular, we use this method to prove Theorem A below, which confirms a long-standing conjecture of James Schmerl.Theorem AIf is a countable recursively saturated model of in which is a strong cut, then for any there is an automorphism j of such that the fixed point set of j is isomorphic to .We (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations