Switch to: References

Citations of:

Frege, Dedekind, and the philosophy of mathematics

In Leila Haaparanta & Jaakko Hintikka (eds.), Frege Synthesized: Essays on the Philosophical and Foundational Work of Gottlob Frege. Dordrecht, Netherland: Kluwer Academic Publishers. pp. 299--343 (1986)

Add citations

You must login to add citations.
  1. Dedekind and Wolffian Deductive Method.José Ferreirós & Abel Lassalle-Casanave - 2022 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 53 (4):345-365.
    Dedekind’s methodology, in his classic booklet on the foundations of arithmetic, has been the topic of some debate. While some authors make it closely analogue to Hilbert’s early axiomatics, others emphasize its idiosyncratic features, most importantly the fact that no axioms are stated and its careful deductive structure apparently rests on definitions alone. In particular, the so-called Dedekind “axioms” of arithmetic are presented by him as “characteristic conditions” in the _definition_ of the complex concept of a _simply infinite_ system. Making (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Geometry and generality in Frege's philosophy of arithmetic.Jamie Tappenden - 1995 - Synthese 102 (3):319 - 361.
    This paper develops some respects in which the philosophy of mathematics can fruitfully be informed by mathematical practice, through examining Frege's Grundlagen in its historical setting. The first sections of the paper are devoted to elaborating some aspects of nineteenth century mathematics which informed Frege's early work. (These events are of considerable philosophical significance even apart from the connection with Frege.) In the middle sections, some minor themes of Grundlagen are developed: the relationship Frege envisions between arithmetic and geometry and (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Space, number and structure: A tale of two debates.Stewart Shapiro - 1996 - Philosophia Mathematica 4 (2):148-173.
    Around the turn of the century, Poincare and Hilbert each published an account of geometry that took the discipline to be an implicit definition of its concepts. The terms ‘point’, ‘line’, and ‘plane’ can be applied to any system of objects that satisfies the axioms. Each mathematician found spirited opposition from a different logicist—Russell against Poincare' and Frege against Hilbert— who maintained the dying view that geometry essentially concerns space or spatial intuition. The debates illustrate the emerging idea of mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Logical structuralism and Benacerraf’s problem.Audrey Yap - 2009 - Synthese 171 (1):157-173.
    There are two general questions which many views in the philosophy of mathematics can be seen as addressing: what are mathematical objects, and how do we have knowledge of them? Naturally, the answers given to these questions are linked, since whatever account we give of how we have knowledge of mathematical objects surely has to take into account what sorts of things we claim they are; conversely, whatever account we give of the nature of mathematical objects must be accompanied by (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Dedekind's Logicism.Ansten Mørch Klev - 2015 - Philosophia Mathematica:nkv027.
    A detailed argument is provided for the thesis that Dedekind was a logicist about arithmetic. The rules of inference employed in Dedekind's construction of arithmetic are, by his lights, all purely logical in character, and the definitions are all explicit; even the definition of the natural numbers as the abstract type of simply infinite systems can be seen to be explicit. The primitive concepts of the construction are logical in their being intrinsically tied to the functioning of the understanding.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Frege, Dedekind, and the Origins of Logicism.Erich H. Reck - 2013 - History and Philosophy of Logic 34 (3):242-265.
    This paper has a two-fold objective: to provide a balanced, multi-faceted account of the origins of logicism; to rehabilitate Richard Dedekind as a main logicist. Logicism should be seen as more deeply rooted in the development of modern mathematics than typically assumed, and this becomes evident by reconsidering Dedekind's writings in relation to Frege's. Especially in its Dedekindian and Fregean versions, logicism constitutes the culmination of the rise of ?pure mathematics? in the nineteenth century; and this rise brought with it (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Dedekind's structuralism: An interpretation and partial defense.Erich H. Reck - 2003 - Synthese 137 (3):369 - 419.
    Various contributors to recent philosophy of mathematics havetaken Richard Dedekind to be the founder of structuralismin mathematics. In this paper I examine whether Dedekind did, in fact, hold structuralist views and, insofar as that is the case, how they relate to the main contemporary variants. In addition, I argue that his writings contain philosophical insights that are worth reexamining and reviving. The discussion focusses on Dedekind''s classic essay Was sind und was sollen die Zahlen?, supplemented by evidence from Stetigkeit und (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Aprioristic yearnings. [REVIEW]Philip Kitcher - 1996 - Erkenntnis 44 (3):397-416.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Dedekind and Cassirer on Mathematical Concept Formation†.Audrey Yap - 2014 - Philosophia Mathematica 25 (3):369-389.
    Dedekind's major work on the foundations of arithmetic employs several techniques that have left him open to charges of psychologism, and through this, to worries about the objectivity of the natural-number concept he defines. While I accept that Dedekind takes the foundation for arithmetic to lie in certain mental powers, I will also argue that, given an appropriate philosophical background, this need not make numbers into subjective mental objects. Even though Dedekind himself did not provide that background, one can nevertheless (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Against ontological reduction.Frederick W. Kroon - 1992 - Erkenntnis 36 (1):53 - 81.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Review: Aprioristic Yearnings. [REVIEW]Philip Kitcher - 1996 - Erkenntnis 44 (3):397 - 416.
    Download  
     
    Export citation  
     
    Bookmark   4 citations