Switch to: References

Add citations

You must login to add citations.
  1. The foundational problem of logic.Gila Sher - 2013 - Bulletin of Symbolic Logic 19 (2):145-198.
    The construction of a systematic philosophical foundation for logic is a notoriously difficult problem. In Part One I suggest that the problem is in large part methodological, having to do with the common philosophical conception of “providing a foundation”. I offer an alternative to the common methodology which combines a strong foundational requirement with the use of non-traditional, holistic tools to achieve this result. In Part Two I delineate an outline of a foundation for logic, employing the new methodology. The (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Foundations for Mathematical Structuralism.Uri Nodelman & Edward N. Zalta - 2014 - Mind 123 (489):39-78.
    We investigate the form of mathematical structuralism that acknowledges the existence of structures and their distinctive structural elements. This form of structuralism has been subject to criticisms recently, and our view is that the problems raised are resolved by proper, mathematics-free theoretical foundations. Starting with an axiomatic theory of abstract objects, we identify a mathematical structure as an abstract object encoding the truths of a mathematical theory. From such foundations, we derive consequences that address the main questions and issues that (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Frege on Numbers: Beyond the Platonist Picture.Erich H. Reck - 2005 - The Harvard Review of Philosophy 13 (2):25-40.
    Gottlob Frege is often called a "platonist". In connection with his philosophy we can talk about platonism concerning three kinds of entities: numbers, or logical objects more generally; concepts, or functions more generally; thoughts, or senses more generally. I will only be concerned about the first of these three kinds here, in particular about the natural numbers. I will also focus mostly on Frege's corresponding remarks in The Foundations of Arithmetic (1884), supplemented by a few asides on Basic Laws of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Aristotelian realism.James Franklin - 2009 - In A. Irvine (ed.), The Philosophy of Mathematics (Handbook of the Philosophy of Science series). North-Holland Elsevier.
    Aristotelian, or non-Platonist, realism holds that mathematics is a science of the real world, just as much as biology or sociology are. Where biology studies living things and sociology studies human social relations, mathematics studies the quantitative or structural aspects of things, such as ratios, or patterns, or complexity, or numerosity, or symmetry. Let us start with an example, as Aristotelians always prefer, an example that introduces the essential themes of the Aristotelian view of mathematics. A typical mathematical truth is (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Frege, Thomae, and Formalism: Shifting Perspectives.Richard Lawrence - 2023 - Journal for the History of Analytical Philosophy 11 (2):1-23.
    Mathematical formalism is the the view that numbers are "signs" and that arithmetic is like a game played with such signs. Frege's colleague Thomae defended formalism using an analogy with chess, and Frege's critique of this analogy has had a major influence on discussions in analytic philosophy about signs, rules, meaning, and mathematics. Here I offer a new interpretation of formalism as defended by Thomae and his predecessors, paying close attention to the mathematical details and historical context. I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Why Can’t There Be Numbers?David Builes - forthcoming - The Philosophical Quarterly.
    Platonists affirm the existence of abstract mathematical objects, and Nominalists deny the existence of abstract mathematical objects. While there are standard arguments in favor of Nominalism, these arguments fail to account for the necessity of Nominalism. Furthermore, these arguments do nothing to explain why Nominalism is true. They only point to certain theoretical vices that might befall the Platonist. The goal of this paper is to formulate and defend a simple, valid argument for the necessity of Nominalism that seeks to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Structuralism in Social Science: Obsolete or Promising?Josef Menšík - 2018 - Teorie Vědy / Theory of Science 40 (2):129-132.
    The approach of structuralism came to philosophy from social science. It was also in social science where, in 1950–1970s, in the form of the French structuralism, the approach gained its widest recognition. Since then, however, the approach fell out of favour in social science. Recently, structuralism is gaining currency in the philosophy of mathematics. After ascertaining that the two structuralisms indeed share a common core, the question stands whether general structuralism could not find its way back into social science. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cassirer and the Structural Turn in Modern Geometry.Georg Schiemer - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    The paper investigates Ernst Cassirer’s structuralist account of geometrical knowledge developed in his Substanzbegriff und Funktionsbegriff. The aim here is twofold. First, to give a closer study of several developments in projective geometry that form the direct background for Cassirer’s philosophical remarks on geometrical concept formation. Specifically, the paper will survey different attempts to justify the principle of duality in projective geometry as well as Felix Klein’s generalization of the use of geometrical transformations in his Erlangen program. The second aim (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A defence of informational structural realism.Luciano Floridi - 2008 - Synthese 161 (2):219-253.
    This is the revised version of an invited keynote lecture delivered at the "1st Australian Computing and Philosophy Conference". The paper is divided into two parts. The first part defends an informational approach to structural realism. It does so in three steps. First, it is shown that, within the debate about structural realism, epistemic and ontic structural realism are reconcilable. It follows that a version of OSR is defensible from a structuralist-friendly position. Second, it is argued that a version of (...)
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • Frege, Dedekind, and the Modern Epistemology of Arithmetic.Markus Pantsar - 2016 - Acta Analytica 31 (3):297-318.
    In early analytic philosophy, one of the most central questions concerned the status of arithmetical objects. Frege argued against the popular conception that we arrive at natural numbers with a psychological process of abstraction. Instead, he wanted to show that arithmetical truths can be derived from the truths of logic, thus eliminating all psychological components. Meanwhile, Dedekind and Peano developed axiomatic systems of arithmetic. The differences between the logicist and axiomatic approaches turned out to be philosophical as well as mathematical. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege, Dedekind, and the Origins of Logicism.Erich H. Reck - 2013 - History and Philosophy of Logic 34 (3):242-265.
    This paper has a two-fold objective: to provide a balanced, multi-faceted account of the origins of logicism; to rehabilitate Richard Dedekind as a main logicist. Logicism should be seen as more deeply rooted in the development of modern mathematics than typically assumed, and this becomes evident by reconsidering Dedekind's writings in relation to Frege's. Especially in its Dedekindian and Fregean versions, logicism constitutes the culmination of the rise of ?pure mathematics? in the nineteenth century; and this rise brought with it (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Life and action.Elijah Millgram - 2009 - Analysis 69 (3):557-564.
    In the ongoing discussion about practical rationality, one of the big questions has become: how does one go about conducting an argument about the forms that practical reasoning can take? Life and Action is thus of great interest not just because it advances substantive and novel views as to what those inference patterns are, but in that it puts on the table, by my count, five distinct methods of arriving at conclusions as to what reasoning about what to do can (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Conceptual Structuralism.José Ferreirós - 2023 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 54 (1):125-148.
    This paper defends a conceptualistic version of structuralism as the most convincing way of elaborating a philosophical understanding of structuralism in line with the classical tradition. The argument begins with a revision of the tradition of “conceptual mathematics”, incarnated in key figures of the period 1850 to 1940 like Riemann, Dedekind, Hilbert or Noether, showing how it led to a structuralist methodology. Then the tension between the ‘presuppositionless’ approach of those authors, and the platonism of some recent versions of philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ernst Cassirer's transcendental account of mathematical reasoning.Francesca Biagioli - 2020 - Studies in History and Philosophy of Science Part A 79 (C):30-40.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • What we talk about when we talk about numbers.Richard Pettigrew - 2018 - Annals of Pure and Applied Logic 169 (12):1437-1456.
    In this paper, I describe and motivate a new species of mathematical structuralism, which I call Instrumental Nominalism about Set-Theoretic Structuralism. As the name suggests, this approach takes standard Set-Theoretic Structuralism of the sort championed by Bourbaki and removes its ontological commitments by taking an instrumental nominalist approach to that ontology of the sort described by Joseph Melia and Gideon Rosen. I argue that this avoids all of the problems that plague other versions of structuralism.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Completeness and Categoricity. Part I: Nineteenth-century Axiomatics to Twentieth-century Metalogic.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (1):1-30.
    This paper is the first in a two-part series in which we discuss several notions of completeness for systems of mathematical axioms, with special focus on their interrelations and historical origins in the development of the axiomatic method. We argue that, both from historical and logical points of view, higher-order logic is an appropriate framework for considering such notions, and we consider some open questions in higher-order axiomatics. In addition, we indicate how one can fruitfully extend the usual set-theoretic semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • The insubstantiality of mathematical objects as positions in structures.Bahram Assadian - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 20.
    The realist versions of mathematical structuralism are often characterized by what I call ‘the insubstantiality thesis’, according to which mathematical objects, being positions in structures, have no non-structural properties: they are purely structural objects. The thesis has been criticized for being inconsistent or descriptively inadequate. In this paper, by implementing the resources of a real-definitional account of essence in the context of Fregean abstraction principles, I offer a version of structuralism – essentialist structuralism – which validates a weaker version of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Projective duality and the rise of modern logic.Günther Eder - 2021 - Bulletin of Symbolic Logic 27 (4):351-384.
    The symmetries between points and lines in planar projective geometry and between points and planes in solid projective geometry are striking features of these geometries that were extensively discussed during the nineteenth century under the labels “duality” or “reciprocity.” The aims of this article are, first, to provide a systematic analysis of duality from a modern point of view, and, second, based on this, to give a historical overview of how discussions about duality evolved during the nineteenth century. Specifically, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Dedekind and Wolffian Deductive Method.José Ferreirós & Abel Lassalle-Casanave - 2022 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 53 (4):345-365.
    Dedekind’s methodology, in his classic booklet on the foundations of arithmetic, has been the topic of some debate. While some authors make it closely analogue to Hilbert’s early axiomatics, others emphasize its idiosyncratic features, most importantly the fact that no axioms are stated and its careful deductive structure apparently rests on definitions alone. In particular, the so-called Dedekind “axioms” of arithmetic are presented by him as “characteristic conditions” in the _definition_ of the complex concept of a _simply infinite_ system. Making (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Structuralism and Mathematical Practice in Felix Klein’s Work on Non-Euclidean Geometry†.Biagioli Francesca - 2020 - Philosophia Mathematica 28 (3):360-384.
    It is well known that Felix Klein took a decisive step in investigating the invariants of transformation groups. However, less attention has been given to Klein’s considerations on the epistemological implications of his work on geometry. This paper proposes an interpretation of Klein’s view as a form of mathematical structuralism, according to which the study of mathematical structures provides the basis for a better understanding of how mathematical research and practice develop.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Non-Eliminative Structuralism. Unlabeled Graphs as a Case Study, Part A†.Hannes Leitgeb - 2020 - Philosophia Mathematica 28 (3):317-346.
    This is Part A of an article that defends non-eliminative structuralism about mathematics by means of a concrete case study: a theory of unlabeled graphs. Part A summarizes the general attractions of non-eliminative structuralism. Afterwards, it motivates an understanding of unlabeled graphs as structures sui generis and develops a corresponding axiomatic theory of unlabeled graphs. As the theory demonstrates, graph theory can be developed consistently without eliminating unlabeled graphs in favour of sets; and the usual structuralist criterion of identity can (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Structuralist Thesis Reconsidered.Georg Schiemer & John Wigglesworth - 2019 - British Journal for the Philosophy of Science 70 (4):1201-1226.
    Øystein Linnebo and Richard Pettigrew have recently developed a version of non-eliminative mathematical structuralism based on Fregean abstraction principles. They argue that their theory of abstract structures proves a consistent version of the structuralist thesis that positions in abstract structures only have structural properties. They do this by defining a subset of the properties of positions in structures, so-called fundamental properties, and argue that all fundamental properties of positions are structural. In this article, we argue that the structuralist thesis, even (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On Dedekind's Logicism.José Ferreirós - unknown
    The place of Richard Dedekind in the history of logicism is a controversial matter. The conception of logic incorporated in his work is certainly old-fashioned, in spite of innovative elements that would play an important role in late 19th and early 20th century discussions. Yet his understanding of logic and logicism remains of interest for the light it throws upon the development of modern logic in general, and logicist views of the foundations of mathematics in particular. The paper clarifies Dedekind's (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The semantic plights of the ante-rem structuralist.Bahram Assadian - 2018 - Philosophical Studies 175 (12):1-20.
    A version of the permutation argument in the philosophy of mathematics leads to the thesis that mathematical terms, contrary to appearances, are not genuine singular terms referring to individual objects; they are purely schematic or variables. By postulating ‘ante-rem structures’, the ante-rem structuralist aims to defuse the permutation argument and retain the referentiality of mathematical terms. This paper presents two semantic problems for the ante- rem view: (1) ante-rem structures are themselves subject to the permutation argument; (2) the ante-rem structuralist (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Introduction to Special Issue: Dedekind and the Philosophy of Mathematics.Erich Reck - 2017 - Philosophia Mathematica 25 (3):287-291.
    © The Author [2017]. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: [email protected] Dedekind was a contemporary of Bernhard Riemann, Georg Cantor, and Gottlob Frege, among others. Together, they revolutionized mathematics and logic in the second half of the nineteenth century. Dedekind had an especially strong influence on David Hilbert, Ernst Zermelo, Emmy Noether, and Nicolas Bourbaki, who completed that revolution in the twentieth century. With respect to mainstream mathematics, he is best known for his contributions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Invariants and Mathematical Structuralism.Georg Schiemer - 2014 - Philosophia Mathematica 22 (1):70-107.
    The paper outlines a novel version of mathematical structuralism related to invariants. The main objective here is twofold: first, to present a formal theory of structures based on the structuralist methodology underlying work with invariants. Second, to show that the resulting framework allows one to model several typical operations in modern mathematical practice: the comparison of invariants in terms of their distinctive power, the bundling of incomparable invariants to increase their collective strength, as well as a heuristic principle related to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematical Thought and its Objects.Peter Smith - 2009 - Analysis 69 (3):549 - 557.
    Needless to say, Charles Parsons’s long awaited book1 is a must-read for anyone with an interest in the philosophy of mathematics. But as Parsons himself says, this has been a very long time in the writing. Its chapters extensively “draw on”, “incorporate material from”, “overlap considerably with”, or “are expanded versions of” papers published over the last twenty-five or so years. What we are reading is thus a multi-layered text with different passages added at different times. And this makes for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Naturalizing Badiou: mathematical ontology and structural realism.Fabio Gironi - 2014 - New York: Palgrave-Macmillan.
    This thesis offers a naturalist revision of Alain Badiou’s philosophy. This goal is pursued through an encounter of Badiou’s mathematical ontology and theory of truth with contemporary trends in philosophy of mathematics and philosophy of science. I take issue with Badiou’s inability to elucidate the link between the empirical and the ontological, and his residual reliance on a Heideggerian project of fundamental ontology, which undermines his own immanentist principles. I will argue for both a bottom-up naturalisation of Badiou’s philosophical approach (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Dedekind and Hilbert on the foundations of the deductive sciences.Ansten Klev - 2011 - Review of Symbolic Logic 4 (4):645-681.
    We offer an interpretation of the words and works of Richard Dedekind and the David Hilbert of around 1900 on which they are held to entertain diverging views on the structure of a deductive science. Firstly, it is argued that Dedekind sees the beginnings of a science in concepts, whereas Hilbert sees such beginnings in axioms. Secondly, it is argued that for Dedekind, the primitive terms of a science are substantive terms whose sense is to be conveyed by elucidation, whereas (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Completeness and categoricty, part II: 20th century metalogic to 21st century semantics.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (1):77-92.
    This paper is the second in a two-part series in which we discuss several notions of completeness for systems of mathematical axioms, with special focus on their interrelations and historical origins in the development of the axiomatic method. We argue that, both from historical and logical points of view, higher-order logic is an appropriate framework for considering such notions, and we consider some open questions in higher-order axiomatics. In addition, we indicate how one can fruitfully extend the usual set-theoretic semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Structural-Abstraction Principles.Graham Leach-Krouse - 2015 - Philosophia Mathematica:nkv033.
    In this paper, I present a class of ‘structural’ abstraction principles, and describe how they are suggested by some features of Cantor's and Dedekind's approach to abstraction. Structural abstraction is a promising source of mathematically tractable new axioms for the neo-logicist. I illustrate this by showing, first, how a theorem of Shelah gives a sufficient condition for consistency in the structural setting, solving what neo-logicists call the ‘bad company’ problem for structural abstraction. Second, I show how, in the structural setting, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ernst Cassirer's Neo-Kantian Philosophy of Geometry.Jeremy Heis - 2011 - British Journal for the History of Philosophy 19 (4):759 - 794.
    One of the most important philosophical topics in the early twentieth century and a topic that was seminal in the emergence of analytic philosophy was the relationship between Kantian philosophy and modern geometry. This paper discusses how this question was tackled by the Neo-Kantian trained philosopher Ernst Cassirer. Surprisingly, Cassirer does not affirm the theses that contemporary philosophers often associate with Kantian philosophy of mathematics. He does not defend the necessary truth of Euclidean geometry but instead develops a kind of (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Mathematics: Method Without Metaphysics.Elaine Landry - 2023 - Philosophia Mathematica 31 (1):56-80.
    I use my reading of Plato to develop what I call as-ifism, the view that, in mathematics, we treat our hypotheses as if they were first principles and we do this with the purpose of solving mathematical problems. I then extend this view to modern mathematics showing that when we shift our focus from the method of philosophy to the method of mathematics, we see that an as-if methodological interpretation of mathematical structuralism can be used to provide an account of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hermann Cohen's Das Princip der Infinitesimal-Methode: The history of an unsuccessful book.Marco Giovanelli - 2016 - Studies in History and Philosophy of Science Part A 58:9-23.
    This paper offers an introduction to Hermann Cohen’s Das Princip der Infinitesimal-Methode, and recounts the history of its controversial reception by Cohen’s early sympathizers, who would become the so-called ‘Marburg school’ of Neo-Kantianism, as well as the reactions it provoked outside this group. By dissecting the ambiguous attitudes of the best-known representatives of the school, as well as those of several minor figures, this paper shows that Das Princip der Infinitesimal-Methode is a unicum in the history of philosophy: it represents (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Methods Behind Poincaré’s Conventions: Structuralism and Hypothetical-Deductivism.María de Paz - 2023 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 54 (1):169-188.
    Poincaré’s conventionalism has been interpreted in many writings as a philosophical position emerged by reflection on certain scientific problems, such as the applicability of geometry to physical space or the status of certain scientific principles. In this paper I would like to consider conventionalism as a philosophical position that emerged from Poincaré’s scientific practice. But not so much from dealing with scientific problems, as from the use of two specific methodologies proper to modern mathematics and the modern natural sciences: methodological (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Philosophical Significance of Frege’s Constraint.Andrea Sereni - 2019 - Philosophia Mathematica 27 (2):244–275.
    Foundational projects disagree on whether pure and applied mathematics should be explained together. Proponents of unified accounts like neologicists defend Frege’s Constraint (FC), a principle demanding that an explanation of applicability be provided by mathematical definitions. I reconsider the philosophical import of FC, arguing that usual conceptions are biased by ontological assumptions. I explore more reasonable weaker variants — Moderate and Modest FC — arguing against common opinion that ante rem structuralism (and other) views can meet them. I dispel doubts (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Predicativity and Structuralism in Dedekind’s Construction of the Reals.Audrey Yap - 2009 - Erkenntnis 71 (2):157-173.
    It is a commonly held view that Dedekind's construction of the real numbers is impredicative. This naturally raises the question of whether this impredicativity is justified by some kind of Platonism about sets. But when we look more closely at Dedekind's philosophical views, his ontology does not look Platonist at all. So how is his construction justified? There are two aspects of the solution: one is to look more closely at his methodological views, and in particular, the places in which (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Methodology and metaphysics in the development of Dedekind's theory of ideals.Jeremy Avigad - 2006 - In José Ferreirós Domínguez & Jeremy Gray (eds.), The Architecture of Modern Mathematics: Essays in History and Philosophy. Oxford, England: Oxford University Press.
    Philosophical concerns rarely force their way into the average mathematician’s workday. But, in extreme circumstances, fundamental questions can arise as to the legitimacy of a certain manner of proceeding, say, as to whether a particular object should be granted ontological status, or whether a certain conclusion is epistemologically warranted. There are then two distinct views as to the role that philosophy should play in such a situation. On the first view, the mathematician is called upon to turn to the counsel (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Critical notice of C. Parsons, Mathematical thought and its objects[REVIEW]Peter Smith - 2009 - Analysis 69 (3):549-557.
    Needless to say, Charles Parsons’s long awaited book1 is a must-read for anyone with an interest in the philosophy of mathematics. But as Parsons himself says, this has been a very long time in the writing. Its chapters extensively “draw on”, “incorporate material from”, “overlap considerably with”, or “are expanded versions of” papers published over the last twenty-five or so years. What we are reading is thus a multi-layered text with different passages added at different times. And this makes for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Peano’s structuralism and the birth of formal languages.Joan Bertran-San-Millán - 2022 - Synthese 200 (4):1-34.
    Recent historical studies have investigated the first proponents of methodological structuralism in late nineteenth-century mathematics. In this paper, I shall attempt to answer the question of whether Peano can be counted amongst the early structuralists. I shall focus on Peano’s understanding of the primitive notions and axioms of geometry and arithmetic. First, I shall argue that the undefinability of the primitive notions of geometry and arithmetic led Peano to the study of the relational features of the systems of objects that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ernst Cassirer on historical thought and the demarcation problem of epistemology.Francesca Biagioli - 2021 - British Journal for the History of Philosophy 29 (4):652-670.
    Cassirer’s neo-Kantian epistemology has become a classical reference in contemporary history and philosophy of science. However, the historical aspects of his thought are sometimes seen to be in some tension with his defence of a priori elements of knowledge. This paper reconsiders Cassirer’s strategy to address this tension by positing functional dependencies at the core of the notion of objectivity. This requires the epistemologist to account for the determination of the objects of knowledge within given scientific theories, but also for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Completeness and Categoricity: 19th Century Axiomatics to 21st Century Senatics.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (1):1-30.
    Steve Awodey and Erich H. Reck. Completeness and Categoricity: 19th Century Axiomatics to 21st Century Senatics.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Logical structuralism and Benacerraf’s problem.Audrey Yap - 2009 - Synthese 171 (1):157-173.
    There are two general questions which many views in the philosophy of mathematics can be seen as addressing: what are mathematical objects, and how do we have knowledge of them? Naturally, the answers given to these questions are linked, since whatever account we give of how we have knowledge of mathematical objects surely has to take into account what sorts of things we claim they are; conversely, whatever account we give of the nature of mathematical objects must be accompanied by (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Dedekind and Cassirer on Mathematical Concept Formation†.Audrey Yap - 2014 - Philosophia Mathematica 25 (3):369-389.
    Dedekind's major work on the foundations of arithmetic employs several techniques that have left him open to charges of psychologism, and through this, to worries about the objectivity of the natural-number concept he defines. While I accept that Dedekind takes the foundation for arithmetic to lie in certain mental powers, I will also argue that, given an appropriate philosophical background, this need not make numbers into subjective mental objects. Even though Dedekind himself did not provide that background, one can nevertheless (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Structuralist Thesis Reconsidered.Georg Schiemer & John Wigglesworth - 2017 - British Journal for the Philosophy of Science:axy004.
    Øystein Linnebo and Richard Pettigrew have recently developed a version of non-eliminative mathematical structuralism based on Fregean abstraction principles. They argue that their theory of abstract structures proves a consistent version of the structuralist thesis that positions in abstract structures only have structural properties. They do this by defining a subset of the properties of positions in structures, so-called fundamental properties, and argue that all fundamental properties of positions are structural. In this paper, we argue that the structuralist thesis, even (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Pasch's empiricism as methodological structuralism.Dirk Schlimm - 2020 - In Erich H. Reck & Georg Schiemer (eds.), The Pre-History of Mathematical Structuralism. Oxford: Oxford University Press. pp. 80-105.
    Download  
     
    Export citation  
     
    Bookmark   1 citation