Switch to: References

Add citations

You must login to add citations.
  1. Fiction, possibility and impossibility: three kinds of mathematical fictions in Leibniz’s work.Oscar M. Esquisabel & Federico Raffo Quintana - 2021 - Archive for History of Exact Sciences 75 (6):613-647.
    This paper is concerned with the status of mathematical fictions in Leibniz’s work and especially with infinitary quantities as fictions. Thus, it is maintained that mathematical fictions constitute a kind of symbolic notion that implies various degrees of impossibility. With this framework, different kinds of notions of possibility and impossibility are proposed, reviewing the usual interpretation of both modal concepts, which appeals to the consistency property. Thus, three concepts of the possibility/impossibility pair are distinguished; they give rise, in turn, to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Is Leibnizian calculus embeddable in first order logic?Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Taras Kudryk, Thomas Mormann & David Sherry - 2017 - Foundations of Science 22 (4):73 - 88.
    To explore the extent of embeddability of Leibnizian infinitesimal calculus in first-order logic (FOL) and modern frameworks, we propose to set aside ontological issues and focus on pro- cedural questions. This would enable an account of Leibnizian procedures in a framework limited to FOL with a small number of additional ingredients such as the relation of infinite proximity. If, as we argue here, first order logic is indeed suitable for developing modern proxies for the inferential moves found in Leibnizian infinitesimal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Leibniz’s syncategorematic infinitesimals.Richard T. W. Arthur - 2013 - Archive for History of Exact Sciences 67 (5):553-593.
    In contrast with some recent theories of infinitesimals as non-Archimedean entities, Leibniz’s mature interpretation was fully in accord with the Archimedean Axiom: infinitesimals are fictions, whose treatment as entities incomparably smaller than finite quantities is justifiable wholly in terms of variable finite quantities that can be taken as small as desired, i.e. syncategorematically. In this paper I explain this syncategorematic interpretation, and how Leibniz used it to justify the calculus. I then compare it with the approach of Smooth Infinitesimal Analysis, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Leibniz's syncategorematic infinitesimals, smooth infinitesimal analysis, and Newton's proposition.Richard Arthur - manuscript
    In contrast with some recent theories of infinitesimals as non-Archimedean entities, Leibniz’s mature interpretation was fully in accord with the Archimedean Axiom: infinitesimals are fictions, whose treatment as entities incomparably smaller than finite quantities is justifiable wholly in terms of variable finite quantities that can be taken as small as desired, i.e. syncategorematically. In this paper I explain this syncategorematic interpretation, and how Leibniz used it to justify the calculus. I then compare it with the approach of Smooth Infinitesimal Analysis (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Three Infinities in Early Modern Philosophy.Anat Schechtman - 2019 - Mind 128 (512):1117-1147.
    Many historical and philosophical studies treat infinity as an exclusively quantitative notion, whose proper domain of application is mathematics and physics. The main aim of this paper is to disentangle, by critically examining, three notions of infinity in the early modern period, and to argue that one—but only one—of them is quantitative. One of these non-quantitative notions concerns being or reality, while the other concerns a particular iterative property of an aggregate. These three notions will emerge through examination of three (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Toward a Clarity of the Extreme Value Theorem.Karin U. Katz, Mikhail G. Katz & Taras Kudryk - 2014 - Logica Universalis 8 (2):193-214.
    We apply a framework developed by C. S. Peirce to analyze the concept of clarity, so as to examine a pair of rival mathematical approaches to a typical result in analysis. Namely, we compare an intuitionist and an infinitesimal approaches to the extreme value theorem. We argue that a given pre-mathematical phenomenon may have several aspects that are not necessarily captured by a single formalisation, pointing to a complementarity rather than a rivalry of the approaches.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond. [REVIEW]Mikhail G. Katz & David Sherry - 2013 - Erkenntnis 78 (3):571-625.
    Many historians of the calculus deny significant continuity between infinitesimal calculus of the seventeenth century and twentieth century developments such as Robinson’s theory. Robinson’s hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Nuevas geometrías, fósforo y redes epistolares. Algunas de las estrategias de Leibniz para formar parte de la Académie des sciences.Miguel Palomo - 2021 - Logos. Anales Del Seminario de Metafísica [Universidad Complutense de Madrid, España] 54 (2):331-348.
    Entre 1676 y 1680 Leibniz intentó conseguir un puesto remunerado en la Académie des sciencesque quedó vacante tras el fallecimiento de Roberval en 1675. Al mismo tiempo, Leibniz ofrece en cartas a Huygens varios métodos, recetas e invenciones que podrían ser de utilidad para la academia parisina: entre ellos encontramos el analysis situs, una discusión sobre el método de Becher para encontrar oro, la receta del fósforo, el método inverso de tangentes, la cuadratura aritmética y su propia red epistolar. La (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Leibniz’s syncategorematic infinitesimals II: their existence, their use and their role in the justification of the differential calculus.David Rabouin & Richard T. W. Arthur - 2020 - Archive for History of Exact Sciences 74 (5):401-443.
    In this paper, we endeavour to give a historically accurate presentation of how Leibniz understood his infinitesimals, and how he justified their use. Some authors claim that when Leibniz called them “fictions” in response to the criticisms of the calculus by Rolle and others at the turn of the century, he had in mind a different meaning of “fiction” than in his earlier work, involving a commitment to their existence as non-Archimedean elements of the continuum. Against this, we show that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Leibniz on the requisites of an exact arithmetical quadrature.Federico Raffo Quintana - 2018 - Studies in History and Philosophy of Science Part A 67 (C):65-73.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Current Bibliography of the History of Science and Its Cultural Influences 2003.Stephen P. Weldon - 2003 - Isis 94:1-275.
    Download  
     
    Export citation  
     
    Bookmark  
  • ¿Qué es una ficción en matemáticas? Leibniz y los infinitesimales como ficciones.Oscar Miguel Esquisabel - 2021 - Logos. Anales Del Seminario de Metafísica [Universidad Complutense de Madrid, España] 54 (2):279-295.
    El objetivo de este trabajo es examinar el concepto leibniziano de ficción matemática, con especial énfasis en la tesis de Leibniz acerca del carácter ficcional de las nociones infinitarias. Se propone en primer lugar, como marco general de la investigación, un conjunto de cinco condiciones que una ficción tiene que cumplir para ser matemáticamente admisible. Sobre la base de las concepciones de Leibniz acerca del conocimiento simbólico, se propone la ficción matemática como la clase de nociones confusas que carecen de (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Leibniz versus Ishiguro: Closing a Quarter Century of Syncategoremania.Tiziana Bascelli, Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, David M. Schaps & David Sherry - 2016 - Hopos: The Journal of the International Society for the History of Philosophy of Science 6 (1):117-147.
    Did Leibniz exploit infinitesimals and infinities à la rigueur or only as shorthand for quantified propositions that refer to ordinary Archimedean magnitudes? Hidé Ishiguro defends the latter position, which she reformulates in terms of Russellian logical fictions. Ishiguro does not explain how to reconcile this interpretation with Leibniz’s repeated assertions that infinitesimals violate the Archimedean property (i.e., Euclid’s Elements, V.4). We present textual evidence from Leibniz, as well as historical evidence from the early decades of the calculus, to undermine Ishiguro’s (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Ten Misconceptions from the History of Analysis and Their Debunking.Piotr Błaszczyk, Mikhail G. Katz & David Sherry - 2013 - Foundations of Science 18 (1):43-74.
    The widespread idea that infinitesimals were “eliminated” by the “great triumvirate” of Cantor, Dedekind, and Weierstrass is refuted by an uninterrupted chain of work on infinitesimal-enriched number systems. The elimination claim is an oversimplification created by triumvirate followers, who tend to view the history of analysis as a pre-ordained march toward the radiant future of Weierstrassian epsilontics. In the present text, we document distortions of the history of analysis stemming from the triumvirate ideology of ontological minimalism, which identified the continuum (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Method, Demonstration and Invention: Leibniz and the Treatment of Quadrature Problems.Federico Raffo Quintana - 2022 - Ideas Y Valores 71 (180):97-116.
    RESUMEN El artículo reconstruye la concepción metodológica de Leibniz de finales del periodo parisino, que subyace al tratado Sobre la cuadratura aritmética del círculo, la elipse y la hipérbola (1676). Se muestra que Leibniz concibió un procedimiento en el cual el hallazgo de nuevos conocimientos de alguna manera coincide con su demostración, y en el que los procesos de análisis y síntesis se emplean de diversas maneras. ABSTRACT The article reconstructs Leibniz's methodological conception of the late Parisian period underlying the (...)
    Download  
     
    Export citation  
     
    Bookmark