Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Mathematically strong subsystems of analysis with low rate of growth of provably recursive functionals.Ulrich Kohlenbach - 1996 - Archive for Mathematical Logic 36 (1):31-71.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Primitive Recursion and the Chain Antichain Principle.Alexander P. Kreuzer - 2012 - Notre Dame Journal of Formal Logic 53 (2):245-265.
    Let the chain antichain principle (CAC) be the statement that each partial order on $\mathbb{N}$ possesses an infinite chain or an infinite antichain. Chong, Slaman, and Yang recently proved using forcing over nonstandard models of arithmetic that CAC is $\Pi^1_1$-conservative over $\text{RCA}_0+\Pi^0_1\text{-CP}$ and so in particular that CAC does not imply $\Sigma^0_2$-induction. We provide here a different purely syntactical and constructive proof of the statement that CAC (even together with WKL) does not imply $\Sigma^0_2$-induction. In detail we show using a (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On the computational content of the Bolzano-Weierstraß Principle.Pavol Safarik & Ulrich Kohlenbach - 2010 - Mathematical Logic Quarterly 56 (5):508-532.
    We will apply the methods developed in the field of ‘proof mining’ to the Bolzano-Weierstraß theorem BW and calibrate the computational contribution of using this theorem in proofs of combinatorial statements. We provide an explicit solution of the Gödel functional interpretation as well as the monotone functional interpretation of BW for the product space Πi ∈ℕ[–ki, ki] . This results in optimal program and bound extraction theorems for proofs based on fixed instances of BW, i.e. for BW applied to fixed (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Local stability of ergodic averages.Jeremy Avigad - unknown
    We consider the extent to which one can compute bounds on the rate of convergence of a sequence of ergodic averages. It is not difficult to construct an example of a computable Lebesgue measure preserving transformation of [0, 1] and a characteristic function f = χA such that the ergodic averages Anf do not converge to a computable element of L2([0, 1]). In particular, there is no computable bound on the rate of convergence for that sequence. On the other hand, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Ramsey's Theorem for Pairs and Provably Recursive Functions.Alexander Kreuzer & Ulrich Kohlenbach - 2009 - Notre Dame Journal of Formal Logic 50 (4):427-444.
    This paper addresses the strength of Ramsey's theorem for pairs ($RT^2_2$) over a weak base theory from the perspective of 'proof mining'. Let $RT^{2-}_2$ denote Ramsey's theorem for pairs where the coloring is given by an explicit term involving only numeric variables. We add this principle to a weak base theory that includes weak König's Lemma and a substantial amount of $\Sigma^0_1$-induction (enough to prove the totality of all primitive recursive functions but not of all primitive recursive functionals). In the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Non-principal ultrafilters, program extraction and higher-order reverse mathematics.Alexander P. Kreuzer - 2012 - Journal of Mathematical Logic 12 (1):1250002-.
    We investigate the strength of the existence of a non-principal ultrafilter over fragments of higher-order arithmetic. Let [Formula: see text] be the statement that a non-principal ultrafilter on ℕ exists and let [Formula: see text] be the higher-order extension of ACA0. We show that [Formula: see text] is [Formula: see text]-conservative over [Formula: see text] and thus that [Formula: see text] is conservative over PA. Moreover, we provide a program extraction method and show that from a proof of a strictly (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Term extraction and Ramsey's theorem for pairs.Alexander P. Kreuzer & Ulrich Kohlenbach - 2012 - Journal of Symbolic Logic 77 (3):853-895.
    In this paper we study with proof-theoretic methods the function(al) s provably recursive relative to Ramsey's theorem for pairs and the cohesive principle (COH). Our main result on COH is that the type 2 functional provably recursive from $RCA_0 + COH + \Pi _1^0 - CP$ are primitive recursive. This also provides a uniform method to extract bounds from proofs that use these principles. As a consequence we obtain a new proof of the fact that $WKL_0 + \Pi _1^0 - (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)On the arithmetical content of restricted forms of comprehension, choice and general uniform boundedness.Ulrich Kohlenbach - 1998 - Annals of Pure and Applied Logic 95 (1-3):257-285.
    In this paper the numerical strength of fragments of arithmetical comprehension, choice and general uniform boundedness is studied systematically. These principles are investigated relative to base systems Tnω in all finite types which are suited to formalize substantial parts of analysis but nevertheless have provably recursive functions of low growth. We reduce the use of instances of these principles in Tnω-proofs of a large class of formulas to the use of instances of certain arithmetical principles thereby determining faithfully the arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Program extraction for 2-random reals.Alexander P. Kreuzer - 2013 - Archive for Mathematical Logic 52 (5-6):659-666.
    Let ${2-\textsf{RAN}}$ be the statement that for each real X a real 2-random relative to X exists. We apply program extraction techniques we developed in Kreuzer and Kohlenbach (J. Symb. Log. 77(3):853–895, 2012. doi:10.2178/jsl/1344862165), Kreuzer (Notre Dame J. Formal Log. 53(2):245–265, 2012. doi:10.1215/00294527-1715716) to this principle. Let ${{\textsf{WKL}_0^\omega}}$ be the finite type extension of ${\textsf{WKL}_0}$ . We obtain that one can extract primitive recursive realizers from proofs in ${{\textsf{WKL}_0^\omega} + \Pi^0_1-{\textsf{CP}} + 2-\textsf{RAN}}$ , i.e., if ${{\textsf{WKL}_0^\omega} + \Pi^0_1-{\textsf{CP}} + 2-\textsf{RAN} (...)
    Download  
     
    Export citation  
     
    Bookmark