Switch to: References

Add citations

You must login to add citations.
  1. Classifying Dini's Theorem.Josef Berger & Peter Schuster - 2006 - Notre Dame Journal of Formal Logic 47 (2):253-262.
    Dini's theorem says that compactness of the domain, a metric space, ensures the uniform convergence of every simply convergent monotone sequence of real-valued continuous functions whose limit is continuous. By showing that Dini's theorem is equivalent to Brouwer's fan theorem for detachable bars, we provide Dini's theorem with a classification in the recently established constructive reverse mathematics propagated by Ishihara. As a complement, Dini's theorem is proved to be equivalent to the analogue of the fan theorem, weak König's lemma, in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Number theory and elementary arithmetic.Jeremy Avigad - 2003 - Philosophia Mathematica 11 (3):257-284.
    is a fragment of first-order aritlimetic so weak that it cannot prove the totality of an iterated exponential fimction. Surprisingly, however, the theory is remarkably robust. I will discuss formal results that show that many theorems of number theory and combinatorics are derivable in elementary arithmetic, and try to place these results in a broader philosophical context.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • (1 other version)On the arithmetical content of restricted forms of comprehension, choice and general uniform boundedness.Ulrich Kohlenbach - 1998 - Annals of Pure and Applied Logic 95 (1-3):257-285.
    In this paper the numerical strength of fragments of arithmetical comprehension, choice and general uniform boundedness is studied systematically. These principles are investigated relative to base systems Tnω in all finite types which are suited to formalize substantial parts of analysis but nevertheless have provably recursive functions of low growth. We reduce the use of instances of these principles in Tnω-proofs of a large class of formulas to the use of instances of certain arithmetical principles thereby determining faithfully the arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Bounded functional interpretation and feasible analysis.Fernando Ferreira & Paulo Oliva - 2007 - Annals of Pure and Applied Logic 145 (2):115-129.
    In this article we study applications of the bounded functional interpretation to theories of feasible arithmetic and analysis. The main results show that the novel interpretation is sound for considerable generalizations of weak König’s Lemma, even in the presence of very weak induction. Moreover, when this is combined with Cook and Urquhart’s variant of the functional interpretation, one obtains effective versions of conservation results regarding weak König’s Lemma which have been so far only obtained non-constructively.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Term extraction and Ramsey's theorem for pairs.Alexander P. Kreuzer & Ulrich Kohlenbach - 2012 - Journal of Symbolic Logic 77 (3):853-895.
    In this paper we study with proof-theoretic methods the function(al) s provably recursive relative to Ramsey's theorem for pairs and the cohesive principle (COH). Our main result on COH is that the type 2 functional provably recursive from $RCA_0 + COH + \Pi _1^0 - CP$ are primitive recursive. This also provides a uniform method to extract bounds from proofs that use these principles. As a consequence we obtain a new proof of the fact that $WKL_0 + \Pi _1^0 - (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Gödel's functional interpretation and its use in current mathematics.Ulrich Kohlenbach - 2008 - Dialectica 62 (2):223–267.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Classical truth in higher types.Ulrich Berger - 2008 - Mathematical Logic Quarterly 54 (3):240-246.
    We study, from a classical point of view, how the truth of a statement about higher type functionals depends on the underlying model. The models considered are the classical set-theoretic finite type hierarchy and the constructively more meaningful models of continuous functionals, hereditarily effective operations, as well as the closed term model of Gödel's system T. The main results are characterisations of prenex classes for which truth in the full set-theoretic model transfers to truth in the other models. As a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Groundwork for weak analysis.António M. Fernandes & Fernando Ferreira - 2002 - Journal of Symbolic Logic 67 (2):557-578.
    This paper develops the very basic notions of analysis in a weak second-order theory of arithmetic BTFA whose provably total functions are the polynomial time computable functions. We formalize within BTFA the real number system and the notion of a continuous real function of a real variable. The theory BTFA is able to prove the intermediate value theorem, wherefore it follows that the system of real numbers is a real closed ordered field. In the last section of the paper, we (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Classical provability of uniform versions and intuitionistic provability.Makoto Fujiwara & Ulrich Kohlenbach - 2015 - Mathematical Logic Quarterly 61 (3):132-150.
    Along the line of Hirst‐Mummert and Dorais, we analyze the relationship between the classical provability of uniform versions Uni(S) of Π2‐statements S with respect to higher order reverse mathematics and the intuitionistic provability of S. Our main theorem states that (in particular) for every Π2‐statement S of some syntactical form, if its uniform version derives the uniform variant of over a classical system of arithmetic in all finite types with weak extensionality, then S is not provable in strong semi‐intuitionistic systems (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Light monotone Dialectica methods for proof mining.Mircea-Dan Hernest - 2009 - Mathematical Logic Quarterly 55 (5):551-561.
    In view of an enhancement of our implementation on the computer, we explore the possibility of an algorithmic optimization of the various proof-theoretic techniques employed by Kohlenbach for the synthesis of new effective uniform bounds out of established qualitative proofs in Numerical Functional Analysis. Concretely, we prove that the method of “colouring” some of the quantifiers as “non-computational” extends well to ε-arithmetization, elimination-of-extensionality and model-interpretation.
    Download  
     
    Export citation  
     
    Bookmark  
  • A most artistic package of a jumble of ideas.Fernando Ferreira - 2008 - Dialectica 62 (2):205–222.
    In the course of ten short sections, we comment on Gödel's seminal dialectica paper of fifty years ago and its aftermath. We start by suggesting that Gödel's use of functionals of finite type is yet another instance of the realistic attitude of Gödel towards mathematics, in tune with his defense of the postulation of ever increasing higher types in foundational studies. We also make some observations concerning Gödel's recasting of intuitionistic arithmetic via the dialectica interpretation, discuss the extra principles that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On Tao's “finitary” infinite pigeonhole principle.Jaime Gaspar & Ulrich Kohlenbach - 2010 - Journal of Symbolic Logic 75 (1):355-371.
    In 2007. Terence Tao wrote on his blog an essay about soft analysis, hard analysis and the finitization of soft analysis statements into hard analysis statements. One of his main examples was a quasi-finitization of the infinite pigeonhole principle IPP, arriving at the "finitary" infinite pigeonhole principle FIPP₁. That turned out to not be the proper formulation and so we proposed an alternative version FIPP₂. Tao himself formulated yet another version FIPP₃ in a revised version of his essay. We give (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Nonstandardness and the bounded functional interpretation.Fernando Ferreira & Jaime Gaspar - 2015 - Annals of Pure and Applied Logic 166 (6):701-712.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Elimination of Skolem functions for monotone formulas in analysis.Ulrich Kohlenbach - 1998 - Archive for Mathematical Logic 37 (5-6):363-390.
    In this paper a new method, elimination of Skolem functions for monotone formulas, is developed which makes it possible to determine precisely the arithmetical strength of instances of various non-constructive function existence principles. This is achieved by reducing the use of such instances in a given proof to instances of certain arithmetical principles. Our framework are systems ${\cal T}^{\omega} :={\rm G}_n{\rm A}^{\omega} +{\rm AC}$ -qf $+\Delta$ , where (G $_n$ A $^{\omega})_{n \in {\Bbb N}}$ is a hierarchy of (weak) subsystems (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Bounded functional interpretation.Fernando Ferreira & Paulo Oliva - 2005 - Annals of Pure and Applied Logic 135 (1):73-112.
    We present a new functional interpretation, based on a novel assignment of formulas. In contrast with Gödel’s functional “Dialectica” interpretation, the new interpretation does not care for precise witnesses of existential statements, but only for bounds for them. New principles are supported by our interpretation, including the FAN theorem, weak König’s lemma and the lesser limited principle of omniscience. Conspicuous among these principles are also refutations of some laws of classical logic. Notwithstanding, we end up discussing some applications of the (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Saturated models of universal theories.Jeremy Avigad - 2002 - Annals of Pure and Applied Logic 118 (3):219-234.
    A notion called Herbrand saturation is shown to provide the model-theoretic analogue of a proof-theoretic method, Herbrand analysis, yielding uniform model-theoretic proofs of a number of important conservation theorems. A constructive, algebraic variation of the method is described, providing yet a third approach, which is finitary but retains the semantic flavor of the model-theoretic version.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Fluctuations, effective learnability and metastability in analysis.Ulrich Kohlenbach & Pavol Safarik - 2014 - Annals of Pure and Applied Logic 165 (1):266-304.
    This paper discusses what kind of quantitative information one can extract under which circumstances from proofs of convergence statements in analysis. We show that from proofs using only a limited amount of the law-of-excluded-middle, one can extract functionals , where L is a learning procedure for a rate of convergence which succeeds after at most B-many mind changes. This -learnability provides quantitative information strictly in between a full rate of convergence and a rate of metastability in the sense of Tao (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Weak theories of nonstandard arithmetic and analysis.Jeremy Avigad - manuscript
    A general method of interpreting weak higher-type theories of nonstandard arithmetic in their standard counterparts is presented. In particular, this provides natural nonstandard conservative extensions of primitive recursive arithmetic, elementary recursive arithmetic, and polynomial-time computable arithmetic. A means of formalizing basic real analysis in such theories is sketched.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Injecting uniformities into Peano arithmetic.Fernando Ferreira - 2009 - Annals of Pure and Applied Logic 157 (2-3):122-129.
    We present a functional interpretation of Peano arithmetic that uses Gödel’s computable functionals and which systematically injects uniformities into the statements of finite-type arithmetic. As a consequence, some uniform boundedness principles are interpreted while maintaining unmoved the -sentences of arithmetic. We explain why this interpretation is tailored to yield conservation results.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Primitive Recursion and the Chain Antichain Principle.Alexander P. Kreuzer - 2012 - Notre Dame Journal of Formal Logic 53 (2):245-265.
    Let the chain antichain principle (CAC) be the statement that each partial order on $\mathbb{N}$ possesses an infinite chain or an infinite antichain. Chong, Slaman, and Yang recently proved using forcing over nonstandard models of arithmetic that CAC is $\Pi^1_1$-conservative over $\text{RCA}_0+\Pi^0_1\text{-CP}$ and so in particular that CAC does not imply $\Sigma^0_2$-induction. We provide here a different purely syntactical and constructive proof of the statement that CAC (even together with WKL) does not imply $\Sigma^0_2$-induction. In detail we show using a (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Ramsey's Theorem for Pairs and Provably Recursive Functions.Alexander Kreuzer & Ulrich Kohlenbach - 2009 - Notre Dame Journal of Formal Logic 50 (4):427-444.
    This paper addresses the strength of Ramsey's theorem for pairs ($RT^2_2$) over a weak base theory from the perspective of 'proof mining'. Let $RT^{2-}_2$ denote Ramsey's theorem for pairs where the coloring is given by an explicit term involving only numeric variables. We add this principle to a weak base theory that includes weak König's Lemma and a substantial amount of $\Sigma^0_1$-induction (enough to prove the totality of all primitive recursive functions but not of all primitive recursive functionals). In the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Bounded Modified Realizability.Fernando Ferreira & Ana Nunes - 2006 - Journal of Symbolic Logic 71 (1):329 - 346.
    We define a notion of realizability, based on a new assignment of formulas, which does not care for precise witnesses of existential statements, but only for bounds for them. The novel form of realizability supports a very general form of the FAN theorem, refutes Markov's principle but meshes well with some classical principles, including the lesser limited principle of omniscience and weak König's lemma. We discuss some applications, as well as some previous results in the literature.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Relative constructivity.Ulrich Kohlenbach - 1998 - Journal of Symbolic Logic 63 (4):1218-1238.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Fragments of Heyting arithmetic.Wolfgang Burr - 2000 - Journal of Symbolic Logic 65 (3):1223-1240.
    We define classes Φnof formulae of first-order arithmetic with the following properties:(i) Everyφϵ Φnis classically equivalent to a Πn-formula (n≠ 1, Φ1:= Σ1).(ii)(iii)IΠnandiΦn(i.e., Heyting arithmetic with induction schema restricted to Φn-formulae) prove the same Π2-formulae.We further generalize a result by Visser and Wehmeier. namely that prenex induction within intuitionistic arithmetic is rather weak: After closing Φnboth under existential and universal quantification (we call these classes Θn) the corresponding theoriesiΘnstill prove the same Π2-formulae. In a second part we consideriΔ0plus collection-principles. We (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On uniform weak König's lemma.Ulrich Kohlenbach - 2002 - Annals of Pure and Applied Logic 114 (1-3):103-116.
    The so-called weak König's lemma WKL asserts the existence of an infinite path b in any infinite binary tree . Based on this principle one can formulate subsystems of higher-order arithmetic which allow to carry out very substantial parts of classical mathematics but are Π 2 0 -conservative over primitive recursive arithmetic PRA . In Kohlenbach 1239–1273) we established such conservation results relative to finite type extensions PRA ω of PRA . In this setting one can consider also a uniform (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations