Switch to: References

Citations of:

The Structure of Models of Peano Arithmetic

Oxford, England: Clarendon Press (2006)

Add citations

You must login to add citations.
  1. Truth and Consistency.Jan Woleński - 2010 - Axiomathes 20 (2-3):347-355.
    This paper investigates relations between truth and consistency. The basic intuition is that truth implies consistency, but the reverse dependence fails. However, this simple account leads to some troubles, due to some metalogical results, in particular the Gödel-Malcev completeness theorem. Thus, a more advanced analysis is required. This is done by employing the concept of ω-consistency and ω-inconsistency. Both concepts motivate that the concept of the standard truth should be introduced as well. The results are illustrated by an interpretation of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Non-Measurability, Imprecise Credences, and Imprecise Chances.Yoaav Isaacs, Alan Hájek & John Hawthorne - 2021 - Mind 131 (523):892-916.
    – We offer a new motivation for imprecise probabilities. We argue that there are propositions to which precise probability cannot be assigned, but to which imprecise probability can be assigned. In such cases the alternative to imprecise probability is not precise probability, but no probability at all. And an imprecise probability is substantially better than no probability at all. Our argument is based on the mathematical phenomenon of non-measurable sets. Non-measurable propositions cannot receive precise probabilities, but there is a natural (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)The Significance of Evidence-based Reasoning in Mathematics, Mathematics Education, Philosophy, and the Natural Sciences (2nd edition).Bhupinder Singh Anand - 2024 - Mumbai: DBA Publishing (Second Edition).
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Infinitesimal Probabilities.Sylvia Wenmackers - 2019 - In Richard Pettigrew & Jonathan Weisberg (eds.), The Open Handbook of Formal Epistemology. PhilPapers Foundation. pp. 199-265.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The complexity of classification problems for models of arithmetic.Samuel Coskey & Roman Kossak - 2010 - Bulletin of Symbolic Logic 16 (3):345-358.
    We observe that the classification problem for countable models of arithmetic is Borel complete. On the other hand, the classification problems for finitely generated models of arithmetic and for recursively saturated models of arithmetic are Borel; we investigate the precise complexity of each of these. Finally, we show that the classification problem for pairs of recursively saturated models and for automorphisms of a fixed recursively saturated model are Borel complete.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Destructibility and axiomatizability of Kaufmann models.Corey Bacal Switzer - 2022 - Archive for Mathematical Logic 61 (7):1091-1111.
    A Kaufmann model is an \(\omega _1\) -like, recursively saturated, rather classless model of \({{\mathsf {P}}}{{\mathsf {A}}}\) (or \({{\mathsf {Z}}}{{\mathsf {F}}} \) ). Such models were constructed by Kaufmann under the combinatorial principle \(\diamondsuit _{\omega _1}\) and Shelah showed they exist in \(\mathsf {ZFC}\) by an absoluteness argument. Kaufmann models are an important witness to the incompactness of \(\omega _1\) similar to Aronszajn trees. In this paper we look at some set theoretic issues related to this motivated by the seemingly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Model theory of the regularity and reflection schemes.Ali Enayat & Shahram Mohsenipour - 2008 - Archive for Mathematical Logic 47 (5):447-464.
    This paper develops the model theory of ordered structures that satisfy Keisler’s regularity scheme and its strengthening REF ${(\mathcal{L})}$ (the reflection scheme) which is an analogue of the reflection principle of Zermelo-Fraenkel set theory. Here ${\mathcal{L}}$ is a language with a distinguished linear order <, and REF ${(\mathcal {L})}$ consists of formulas of the form $$\exists x \forall y_{1} < x \ldots \forall y_{n} < x \varphi (y_{1},\ldots ,y_{n})\leftrightarrow \varphi^{ < x}(y_1, \ldots ,y_n),$$ where φ is an ${\mathcal{L}}$ -formula, φ (...))
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.
    Suppose that M⊧PA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}\models \mathsf{PA}$$\end{document} and X⊆P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak X} \subseteq {\mathcal P}$$\end{document}. If M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}$$\end{document} has a finitely generated elementary end extension N≻endM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal N}\succ _\mathsf{end} {\mathcal M}$$\end{document} such that {X∩M:X∈Def}=X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{X \cap M : X \in {{\mathrm{Def}}}\} = (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Models of weak theories of truth.Mateusz Łełyk & Bartosz Wcisło - 2017 - Archive for Mathematical Logic 56 (5):453-474.
    In the following paper we propose a model-theoretical way of comparing the “strength” of various truth theories which are conservative over $$ PA $$. Let $${\mathfrak {Th}}$$ denote the class of models of $$ PA $$ which admit an expansion to a model of theory $${ Th}$$. We show (combining some well known results and original ideas) that $$\begin{aligned} {{\mathfrak {PA}}}\supset {\mathfrak {TB}}\supset {{\mathfrak {RS}}}\supset {\mathfrak {UTB}}\supseteq \mathfrak {CT^-}, \end{aligned}$$ where $${\mathfrak {PA}}$$ denotes simply the class of all models of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Subsets coded in elementary end extensions.James H. Schmerl - 2014 - Archive for Mathematical Logic 53 (5-6):571-581.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Models of : when two elements are necessarily order automorphic.Saharon Shelah - 2015 - Mathematical Logic Quarterly 61 (6):399-417.
    We are interested in the question of how much the order of a non‐standard model of can determine the model. In particular, for a model M, we want to characterize the complete types of non‐standard elements such that the linear orders and are necessarily isomorphic. It is proved that this set includes the complete types such that if the pair realizes it (in M) then there is an element c such that for all standard n,,,, and. We prove that this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations