Switch to: References

Add citations

You must login to add citations.
  1. Structural and universal completeness in algebra and logic.Paolo Aglianò & Sara Ugolini - 2024 - Annals of Pure and Applied Logic 175 (3):103391.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Logics without the contraction rule and residuated lattices.Hiroakira Ono - 2010 - Australasian Journal of Logic 8:50-81.
    In this paper, we will develop an algebraic study of substructural propositional logics over FLew, i.e. the logic which is obtained from intuitionistic logics by eliminating the contraction rule. Our main technical tool is to use residuated lattices as the algebraic semantics for them. This enables us to study different kinds of nonclassical logics, including intermediate logics, BCK-logics, Lukasiewicz’s many-valued logics and fuzzy logics, within a uniform framework.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Inconsistency lemmas in algebraic logic.James G. Raftery - 2013 - Mathematical Logic Quarterly 59 (6):393-406.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On a Logico-Algebraic Approach to AGM Belief Contraction Theory.D. Fazio & M. Pra Baldi - 2021 - Journal of Philosophical Logic 50 (5):911-938.
    In this paper we investigate AGM belief contraction operators by using the tools of algebraic logic. We generalize the notion of contraction to arbitrary finitary propositional logics, and we show how to switch from a syntactic-based approach to a semantic one. This allows to build a solid bridge between the validity of AGM postulates in a propositional logic and specific algebraic properties of its intended algebraic counterpart. Such a connection deserves particular attention when we deal with maxichoice contractions, as studied (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Semisimple Varieties of Modal Algebras.Tomasz Kowalski & Marcus Kracht - 2006 - Studia Logica 83 (1-3):351-363.
    In this paper we show that a variety of modal algebras of finite type is semisimple iff it is discriminator iff it is both weakly transitive and cyclic. This fact has been claimed already in [4] (based on joint work by the two authors) but the proof was fatally flawed.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On n -contractive fuzzy logics.Rostislav Horčík, Carles Noguera & Milan Petrík - 2007 - Mathematical Logic Quarterly 53 (3):268-288.
    It is well known that MTL satisfies the finite embeddability property. Thus MTL is complete w. r. t. the class of all finite MTL-chains. In order to reach a deeper understanding of the structure of this class, we consider the extensions of MTL by adding the generalized contraction since each finite MTL-chain satisfies a form of this generalized contraction. Simultaneously, we also consider extensions of MTL by the generalized excluded middle laws introduced in [9] and the axiom of weak cancellation (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Quasi-subtractive varieties.Tomasz Kowalski, Francesco Paoli & Matthew Spinks - 2011 - Journal of Symbolic Logic 76 (4):1261-1286.
    Varieties like groups, rings, or Boolean algebras have the property that, in any of their members, the lattice of congruences is isomorphic to a lattice of more manageable objects, for example normal subgroups of groups, two-sided ideals of rings, filters (or ideals) of Boolean algebras.algebraic logic can explain these phenomena at a rather satisfactory level of generality: in every member A of a τ-regular variety ������ the lattice of congruences of A is isomorphic to the lattice of deductive filters on (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Semisimplicity, EDPC and Discriminator Varieties of Bounded Weak-commutative Residuated Lattices with an S4-like Modal Operator.Hiroki Takamura - 2012 - Studia Logica 100 (6):1137-1148.
    In this paper, we show that all semisimple varieties of bounded weak-commutative residuated lattices with an S4-like modal operator are discriminator varieties. We also give a characterization of discriminator and EDPC varieties of bounded weak-commutative residuated lattices with an S4-like modal operator follows.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Expansions of Dually Pseudocomplemented Heyting Algebras.Christopher J. Taylor - 2017 - Studia Logica 105 (4):817-841.
    We investigate expansions of Heyting algebras in possession of a unary term describing the filters that correspond to congruences. Hasimoto proved that Heyting algebras equipped with finitely many normal operators have such a term, generalising a standard construction on finite-type boolean algebras with operators. We utilise Hasimoto’s technique, extending the existence condition to a larger class of EHAs and some classes of double-Heyting algebras. Such a term allows us to characterise varieties with equationally definable principal congruences using a single equation. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Semisimples in Varieties of Commutative Integral Bounded Residuated Lattices.Antoni Torrens - 2016 - Studia Logica 104 (5):849-867.
    In any variety of bounded integral residuated lattice-ordered commutative monoids the class of its semisimple members is closed under isomorphic images, subalgebras and products, but it is not closed under homomorphic images, and so it is not a variety. In this paper we study varieties of bounded residuated lattices whose semisimple members form a variety, and we give an equational presentation for them. We also study locally representable varieties whose semisimple members form a variety. Finally, we analyze the relationship with (...)
    Download  
     
    Export citation  
     
    Bookmark