Switch to: References

Add citations

You must login to add citations.
  1. Generalizing proofs in monadic languages.Matthias Baaz & Piotr Wojtylak - 2008 - Annals of Pure and Applied Logic 154 (2):71-138.
    This paper develops a proof theory for logical forms of proofs in the case of monadic languages. Among the consequences are different kinds of generalization of proofs in various schematic proof systems. The results use suitable relations between logical properties of partial proof data and algebraic properties of corresponding sets of linear diophantine equations.
    Download  
     
    Export citation  
     
    Bookmark  
  • Independent axiomatizability of sets of sentences.Piotr Wojtylak - 1989 - Annals of Pure and Applied Logic 44 (3):259-299.
    This is an expository paper on the problem of independent axiomatization of any set of sentences. This subject was investigated in 50's and 60's, and was abandoned later on, though not all fundamental questions were settled then. Besides, some papers written at that time are hardly available today and there are mistakes and misunderstandings there. We would like to get back to that unfinished business to clarify the subject matter, correct mistakes and answer questions left open by others. We shall (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel's Theorems.Rod J. L. Adams & Roman Murawski - 1999 - Dordrecht, Netherland: Springer Verlag.
    Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On the number of steps in proofs.Jan Kraj\mIček - 1989 - Annals of Pure and Applied Logic 41 (2):153-178.
    In this paper we prove some results about the complexity of proofs. We consider proofs in Hilbert-style formal systems such as in [17]. Thus a proof is a sequence offormulas satisfying certain conditions. We can view the formulas as being strings of symbols; hence the whole proof is a string too. We consider the following measures of complexity of proofs: length , depth and number of steps For a particular formal system and a given formula A we consider the shortest (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations