Switch to: References

Add citations

You must login to add citations.
  1. Logic in the 1930s: type theory and model theory.Georg Schiemer & Erich H. Reck - 2013 - Bulletin of Symbolic Logic 19 (4):433-472.
    In historical discussions of twentieth-century logic, it is typically assumed that model theory emerged within the tradition that adopted first-order logic as the standard framework. Work within the type-theoretic tradition, in the style of Principia Mathematica, tends to be downplayed or ignored in this connection. Indeed, the shift from type theory to first-order logic is sometimes seen as involving a radical break that first made possible the rise of modern model theory. While comparing several early attempts to develop the semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On proofs of the incompleteness theorems based on Berry's paradox by Vopěnka, Chaitin, and Boolos.Makoto Kikuchi, Taishi Kurahashi & Hiroshi Sakai - 2012 - Mathematical Logic Quarterly 58 (4-5):307-316.
    By formalizing Berry's paradox, Vopěnka, Chaitin, Boolos and others proved the incompleteness theorems without using the diagonal argument. In this paper, we shall examine these proofs closely and show their relationships. Firstly, we shall show that we can use the diagonal argument for proofs of the incompleteness theorems based on Berry's paradox. Then, we shall show that an extension of Boolos' proof can be considered as a special case of Chaitin's proof by defining a suitable Kolmogorov complexity. We shall show (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Logic in the 1930s: Type Theory and Model Theory.Georg Schiemer & Erich H. Reck - 2013 - Bulletin of Symbolic Logic 19 (4):433-472.
    In historical discussions of twentieth-century logic, it is typically assumed that model theory emerged within the tradition that adopted first-order logic as the standard framework. Work within the type-theoretic tradition, in the style ofPrincipia Mathematica, tends to be downplayed or ignored in this connection. Indeed, the shift from type theory to first-order logic is sometimes seen as involving a radical break that first made possible the rise of modern model theory. While comparing several early attempts to develop the semantics of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Kalmár's Argument Against the Plausibility of Church's Thesis.Máté Szabó - 2018 - History and Philosophy of Logic 39 (2):140-157.
    In his famous paper, An Unsolvable Problem of Elementary Number Theory, Alonzo Church identified the intuitive notion of effective calculability with the mathematically precise notion of recursiveness. This proposal, known as Church's Thesis, has been widely accepted. Only a few papers have been written against it. One of these is László Kalmár's An Argument Against the Plausibility of Church's Thesis from 1959. The aim of this paper is to present Kalmár's argument and to fill in missing details based on his (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Depth of Gödel’s Incompleteness Theorems.Yong Cheng - forthcoming - Philosophia Mathematica.
    ABSTRACT We use Gödel’s incompleteness theorems as a case study for investigating mathematical depth. We examine the philosophical question of what the depth of Gödel’s incompleteness theorems consists in. We focus on the methodological study of the depth of Gödel’s incompleteness theorems, and propose three criteria to account for the depth of the incompleteness theorems: influence, fruitfulness, and unity. Finally, we give some explanations for our account of the depth of Gödel’s incompleteness theorems.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the relationships between some meta-mathematical properties of arithmetical theories.Yong Cheng - forthcoming - Logic Journal of the IGPL.
    In this work, we aim at understanding incompleteness in an abstract way via metamathematical properties of formal theories. We systematically examine the relationships between the following twelve important metamathematical properties of arithmetical theories: Rosser, EI (effectively inseparable), RI (recursively inseparable), TP (Turing persistent), EHU (essentially hereditarily undecidable), EU (essentially undecidable), Creative, |$\textbf{0}^{\prime }$| (theories with Turing degree |$\textbf{0}^{\prime }$|⁠), REW (all RE sets are weakly representable), RFD (all recursive functions are definable), RSS (all recursive sets are strongly representable), RSW (all (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Gödel’s Incompleteness Theorem and the Anti-Mechanist Argument: Revisited.Yong Cheng - 2020 - Studia Semiotyczne 34 (1):159-182.
    This is a paper for a special issue of Semiotic Studies devoted to Stanislaw Krajewski’s paper. This paper gives some supplementary notes to Krajewski’s on the Anti-Mechanist Arguments based on Gödel’s incompleteness theorem. In Section 3, we give some additional explanations to Section 4–6 in Krajewski’s and classify some misunderstandings of Gödel’s incompleteness theorem related to AntiMechanist Arguments. In Section 4 and 5, we give a more detailed discussion of Gödel’s Disjunctive Thesis, Gödel’s Undemonstrability of Consistency Thesis and the definability (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Finding the limit of incompleteness I.Yong Cheng - 2020 - Bulletin of Symbolic Logic 26 (3-4):268-286.
    In this paper, we examine the limit of applicability of Gödel’s first incompleteness theorem. We first define the notion “$\textsf {G1}$ holds for the theory $T$”. This paper is motivated by the following question: can we find a theory with a minimal degree of interpretation for which $\textsf {G1}$ holds. To approach this question, we first examine the following question: is there a theory T such that Robinson’s $\mathbf {R}$ interprets T but T does not interpret $\mathbf {R}$ and $\textsf (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for completeness. This paper (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section I. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Representation and Reality by Language: How to make a home quantum computer?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (34):1-14.
    A set theory model of reality, representation and language based on the relation of completeness and incompleteness is explored. The problem of completeness of mathematics is linked to its counterpart in quantum mechanics. That model includes two Peano arithmetics or Turing machines independent of each other. The complex Hilbert space underlying quantum mechanics as the base of its mathematical formalism is interpreted as a generalization of Peano arithmetic: It is a doubled infinite set of doubled Peano arithmetics having a remarkable (...)
    Download  
     
    Export citation  
     
    Bookmark