Switch to: References

Add citations

You must login to add citations.
  1. Non Deterministic Classical Logic: The -calculus.Karim Nour - 2002 - Mathematical Logic Quarterly 48 (3):357-366.
    In this paper, we present an extension of λμ-calculus called λμ++-calculus which has the following properties: subject reduction, strong normalization, unicity of the representation of data and thus confluence only on data types. This calculus allows also to program the parallel-or.
    Download  
     
    Export citation  
     
    Bookmark  
  • Uniform heyting arithmetic.Ulrich Berger - 2005 - Annals of Pure and Applied Logic 133 (1):125-148.
    We present an extension of Heyting arithmetic in finite types called Uniform Heyting Arithmetic that allows for the extraction of optimized programs from constructive and classical proofs. The system has two sorts of first-order quantifiers: ordinary quantifiers governed by the usual rules, and uniform quantifiers subject to stronger variable conditions expressing roughly that the quantified object is not computationally used in the proof. We combine a Kripke-style Friedman/Dragalin translation which is inspired by work of Coquand and Hofmann and a variant (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Une preuve formelle et intuitionniste du théorème de complétude de la logique classique.Jean-Louis Krivine - 1996 - Bulletin of Symbolic Logic 2 (4):405-421.
    Introduction. Il est bien connu que la correspondance de Curry-Howard permet d'associer un programme, sous la forme d'un λ-terme, à toute preuve intuitionniste, formalisée dans le calcul des prédicats du second ordre. Cette correspondance a été étendue, assez récemment, à la logique classique moyennant une extension convenable du λ-calcul. Chaque théorème formalisé en logique du second ordre correspond donc à une spécification de programme.Il se pose alors le problème, en général tout à fait non trivial, de trouver la spécification associée (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A new deconstructive logic: Linear logic.Vincent Danos, Jean-Baptiste Joinet & Harold Schellinx - 1997 - Journal of Symbolic Logic 62 (3):755-807.
    The main concern of this paper is the design of a noetherian and confluent normalization for LK 2. The method we present is powerful: since it allows us to recover as fragments formalisms as seemingly different as Girard's LC and Parigot's λμ, FD, delineates other viable systems as well, and gives means to extend the Krivine/Leivant paradigm of `programming-with-proofs' to classical logic ; it is painless: since we reduce strong normalization and confluence to the same properties for linear logic using (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Refined program extraction from classical proofs.Ulrich Berger, Wilfried Buchholz & Helmut Schwichtenberg - 2002 - Annals of Pure and Applied Logic 114 (1-3):3-25.
    The paper presents a refined method of extracting reasonable and sometimes unexpected programs from classical proofs of formulas of the form ∀x∃yB . We also generalize previously known results, since B no longer needs to be quantifier-free, but only has to belong to a strictly larger class of so-called “goal formulas”. Furthermore we allow unproven lemmas D in the proof of ∀x∃yB , where D is a so-called “definite” formula.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Complete Types in an Extension of the System AF2.Samir Farkh & Karim Nour - 2003 - Journal of Applied Non-Classical Logics 13 (1):73-85.
    In this paper, we extend the system AF2 in order to have the subject reduction for the $betaeta$-reduction. We prove that the types with positive quantifiers are complete for models that are stable by weak-head expansion.
    Download  
     
    Export citation  
     
    Bookmark  
  • A semantical storage operator theorem for all types.Christophe Raffalli - 1998 - Annals of Pure and Applied Logic 91 (1):17-31.
    Storage operators are λ-terms which simulate call-by-value in call-by-name for a given set of terms. Krivine's storage operator theorem shows that any term of type ¬D → ¬D*, where D* is the Gödel translation of D, is a storage operator for the terms of type D when D is a data-type or a formula with only positive second order quantifiers. We prove that a new semantical version of Krivine's theorem is valid for every types. This also gives a simpler proof (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A short proof of the strong normalization of classical natural deduction with disjunction.René David & Karim Nour - 2003 - Journal of Symbolic Logic 68 (4):1277-1288.
    We give a direct, purely arithmetical and elementary proof of the strong normalization of the cut-elimination procedure for full (i.e., in presence of all the usual connectives) classical natural deduction.
    Download  
     
    Export citation  
     
    Bookmark   6 citations