Switch to: References

Add citations

You must login to add citations.
  1. Unified characterizations of lowness properties via Kolmogorov complexity.Takayuki Kihara & Kenshi Miyabe - 2015 - Archive for Mathematical Logic 54 (3-4):329-358.
    Consider a randomness notion C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}. A uniform test in the sense of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document} is a total computable procedure that each oracle X produces a test relative to X in the sense of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}. We say that a binary sequence Y is C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}-random uniformly relative to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Truth-table Schnorr randomness and truth-table reducible randomness.Kenshi Miyabe - 2011 - Mathematical Logic Quarterly 57 (3):323-338.
    Schnorr randomness and computable randomness are natural concepts of random sequences. However van Lambalgen’s Theorem fails for both randomnesses. In this paper we define truth-table Schnorr randomness and truth-table reducible randomness, for which we prove that van Lambalgen's Theorem holds. We also show that the classes of truth-table Schnorr random reals relative to a high set contain reals Turing equivalent to the high set. It follows that each high Schnorr random real is half of a real for which van Lambalgen's (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Almost everywhere domination and superhighness.Stephen G. Simpson - 2007 - Mathematical Logic Quarterly 53 (4):462-482.
    Let ω be the set of natural numbers. For functions f, g: ω → ω, we say f is dominated by g if f < g for all but finitely many n ∈ ω. We consider the standard “fair coin” probability measure on the space 2ω of in-finite sequences of 0's and 1's. A Turing oracle B is said to be almost everywhere dominating if, for measure 1 many X ∈ 2ω, each function which is Turing computable from X is (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Mass problems and randomness.Stephen G. Simpson - 2005 - Bulletin of Symbolic Logic 11 (1):1-27.
    A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if every member of Q Turing computes a member of P. We say that P is strongly reducible to Q if every member of Q Turing computes a member of P via a fixed Turing functional. The weak degrees and strong degrees are the equivalence classes of mass problems under weak and strong reducibility, respectively. We (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Randomness and lowness notions via open covers.Laurent Bienvenu & Joseph S. Miller - 2012 - Annals of Pure and Applied Logic 163 (5):506-518.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Relative Randomness and Cardinality.George Barmpalias - 2010 - Notre Dame Journal of Formal Logic 51 (2):195-205.
    A set $B\subseteq\mathbb{N}$ is called low for Martin-Löf random if every Martin-Löf random set is also Martin-Löf random relative to B . We show that a $\Delta^0_2$ set B is low for Martin-Löf random if and only if the class of oracles which compress less efficiently than B , namely, the class $\mathcal{C}^B=\{A\ |\ \forall n\ K^B(n)\leq^+ K^A(n)\}$ is countable (where K denotes the prefix-free complexity and $\leq^+$ denotes inequality modulo a constant. It follows that $\Delta^0_2$ is the largest arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • 2009 North American Annual Meeting of the Association for Symbolic Logic.Alasdair Urquhart - 2009 - Bulletin of Symbolic Logic 15 (4):441-464.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mass problems and almost everywhere domination.Stephen G. Simpson - 2007 - Mathematical Logic Quarterly 53 (4):483-492.
    We examine the concept of almost everywhere domination from the viewpoint of mass problems. Let AED and MLR be the sets of reals which are almost everywhere dominating and Martin-Löf random, respectively. Let b1, b2, and b3 be the degrees of unsolvability of the mass problems associated with AED, MLR × AED, and MLR ∩ AED, respectively. Let [MATHEMATICAL SCRIPT CAPITAL P]w be the lattice of degrees of unsolvability of mass problems associated with nonempty Π01 subsets of 2ω. Let 1 (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Calibrating randomness.Rod Downey, Denis R. Hirschfeldt, André Nies & Sebastiaan A. Terwijn - 2006 - Bulletin of Symbolic Logic 12 (3):411-491.
    We report on some recent work centered on attempts to understand when one set is more random than another. We look at various methods of calibration by initial segment complexity, such as those introduced by Solovay [125], Downey, Hirschfeldt, and Nies [39], Downey, Hirschfeldt, and LaForte [36], and Downey [31]; as well as other methods such as lowness notions of Kučera and Terwijn [71], Terwijn and Zambella [133], Nies [101, 100], and Downey, Griffiths, and Reid [34]; higher level randomness notions (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Tracing and domination in the Turing degrees.George Barmpalias - 2012 - Annals of Pure and Applied Logic 163 (5):500-505.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Computing k-trivial sets by incomplete random sets.Laurent Bienvenu, Adam R. Day, Noam Greenberg, Antonín Kučera, Joseph S. Miller, André Nies & Dan Turetsky - 2014 - Bulletin of Symbolic Logic 20 (1):80-90.
    EveryK-trivial set is computable from an incomplete Martin-Löf random set, i.e., a Martin-Löf random set that does not compute the halting problem.
    Download  
     
    Export citation  
     
    Bookmark   5 citations