Switch to: References

Add citations

You must login to add citations.
  1. Another look at the second incompleteness theorem.Albert Visser - 2020 - Review of Symbolic Logic 13 (2):269-295.
    In this paper we study proofs of some general forms of the Second Incompleteness Theorem. These forms conform to the Feferman format, where the proof predicate is fixed and the representation of the set of axioms varies. We extend the Feferman framework in one important point: we allow the interpretation of number theory to vary.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Current Research on Gödel’s Incompleteness Theorems.Yong Cheng - 2021 - Bulletin of Symbolic Logic 27 (2):113-167.
    We give a survey of current research on Gödel’s incompleteness theorems from the following three aspects: classifications of different proofs of Gödel’s incompleteness theorems, the limit of the applicability of Gödel’s first incompleteness theorem, and the limit of the applicability of Gödel’s second incompleteness theorem.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The absorption law: Or: how to Kreisel a Hilbert–Bernays–Löb.Albert Visser - 2020 - Archive for Mathematical Logic 60 (3-4):441-468.
    In this paper, we show how to construct for a given consistent theory U a $$\varSigma ^0_1$$ Σ 1 0 -predicate that both satisfies the Löb Conditions and the Kreisel Condition—even if U is unsound. We do this in such a way that U itself can verify satisfaction of an internal version of the Kreisel Condition.
    Download  
     
    Export citation  
     
    Bookmark  
  • Variants of Kreisel’s Conjecture on a New Notion of Provability.Paulo Guilherme Santos & Reinhard Kahle - 2021 - Bulletin of Symbolic Logic 27 (4):337-350.
    Kreisel’s conjecture is the statement: if, for all$n\in \mathbb {N}$,$\mathop {\text {PA}} \nolimits \vdash _{k \text { steps}} \varphi (\overline {n})$, then$\mathop {\text {PA}} \nolimits \vdash \forall x.\varphi (x)$. For a theory of arithmeticT, given a recursive functionh,$T \vdash _{\leq h} \varphi $holds if there is a proof of$\varphi $inTwhose code is at most$h(\#\varphi )$. This notion depends on the underlying coding.${P}^h_T(x)$is a predicate for$\vdash _{\leq h}$inT. It is shown that there exist a sentence$\varphi $and a total recursive functionhsuch that$T\vdash (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Rosser Provability and Normal Modal Logics.Taishi Kurahashi - 2020 - Studia Logica 108 (3):597-617.
    In this paper, we investigate Rosser provability predicates whose provability logics are normal modal logics. First, we prove that there exists a Rosser provability predicate whose provability logic is exactly the normal modal logic \. Secondly, we introduce a new normal modal logic \ which is a proper extension of \, and prove that there exists a Rosser provability predicate whose provability logic includes \.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Arithmetical completeness theorems for monotonic modal logics.Haruka Kogure & Taishi Kurahashi - 2023 - Annals of Pure and Applied Logic 174 (7):103271.
    Download  
     
    Export citation  
     
    Bookmark