Switch to: References

Add citations

You must login to add citations.
  1. Bi-Isolation in the D.C.E. Degrees.Guohua Wu - 2004 - Journal of Symbolic Logic 69 (2):409 - 420.
    In this paper, we study the bi-isolation phenomena in the d.c.e. degrees and prove that there are c.e. degrees c₁ < c₂ and a d.c.e. degree d ∈ (c₁, c₂) such that (c₁, d) and (d, c₂) contain no c.e. degrees. Thus, the c.e. degrees between c₁ and c₂ are all incomparable with d. We also show that there are d.c.e. degrees d₁ < d₂ such that (d₁, d₂) contains a unique c.e. degree.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relative enumerability in the difference hierarchy.Marat Arslanov, Geoffrey Laforte & Theodore Slaman - 1998 - Journal of Symbolic Logic 63 (2):411-420.
    We show that the intersection of the class of 2-REA degrees with that of the ω-r.e. degrees consists precisely of the class of d.r.e. degrees. We also include some applications and show that there is no natural generalization of this result to higher levels of the REA hierarchy.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Nonisolated degrees and the jump operator.Guohua Wu - 2002 - Annals of Pure and Applied Logic 117 (1-3):209-221.
    Say that a d.c.e. degree d is nonisolated if for any c.e. degree a
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Isolation and the high/low hierarchy.Shamil Ishmukhametov & Guohua Wu - 2002 - Archive for Mathematical Logic 41 (3):259-266.
    Say that a d.c.e. degree d is isolated by a c.e. degree b, if bMathematics Subject Classification (2000): 03D25, 03D30, 03D35 RID=""ID="" Key words or phrases: Computably enumerable (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On relative enumerability of Turing degrees.Shamil Ishmukhametov - 2000 - Archive for Mathematical Logic 39 (3):145-154.
    Let d be a Turing degree, R[d] and Q[d] denote respectively classes of recursively enumerable (r.e.) and all degrees in which d is relatively enumerable. We proved in Ishmukhametov [1999] that there is a degree d containing differences of r.e.sets (briefly, d.r.e.degree) such that R[d] possess a least elementm $>$ 0. Now we show the existence of a d.r.e. d such that R[d] has no a least element. We prove also that for any REA-degree d below 0 $'$ the class (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An Interval of Computably Enumerable Isolating Degrees.Matthew C. Salts - 1999 - Mathematical Logic Quarterly 45 (1):59-72.
    We construct computably enumerable degrees a < b such that all computably enumerable degrees c with a < c < b isolate some d. c. e. degree d.
    Download  
     
    Export citation  
     
    Bookmark  
  • Isolation and lattice embeddings.Guohua Wu - 2002 - Journal of Symbolic Logic 67 (3):1055-1064.
    Say that (a, d) is an isolation pair if a is a c.e. degree, d is a d.c.e. degree, a < d and a bounds all c.e. degrees below d. We prove that there are an isolation pair (a, d) and a c.e. degree c such that c is incomparable with a, d, and c cups d to o', caps a to o. Thus, {o, c, d, o'} is a diamond embedding, which was first proved by Downey in [9]. Furthermore, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Isolation in the CEA hierarchy.Geoffrey LaForte - 2005 - Archive for Mathematical Logic 44 (2):227-244.
    Examining various kinds of isolation phenomena in the Turing degrees, I show that there are, for every n>0, (n+1)-c.e. sets isolated in the n-CEA degrees by n-c.e. sets below them. For n≥1 such phenomena arise below any computably enumerable degree, and conjecture that this result holds densely in the c.e. degrees as well. Surprisingly, such isolation pairs also exist where the top set has high degree and the isolating set is low, although the complete situation for jump classes remains unknown.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • 1998–99 Annual Meeting of the Association for Symbolic Logic.Sam Buss - 1999 - Bulletin of Symbolic Logic 5 (3):395-421.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the r.e. predecessors of d.r.e. degrees.Shamil Ishmukhametov - 1999 - Archive for Mathematical Logic 38 (6):373-386.
    Let d be a Turing degree containing differences of recursively enumerable sets (d.r.e.sets) and R[d] be the class of less than d r.e. degrees in whichd is relatively enumerable (r.e.). A.H.Lachlan proved that for any non-recursive d.r.e. d R[d] is not empty. We show that the r.e. degree defined by Lachlan for a d.r.e.set $D\in$ d is just the minimum degree in which D is r.e. Then we study for a given d.r.e. degree d class R[d] and show that there (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Complementing cappable degrees in the difference hierarchy.Rod Downey, Angsheng Li & Guohua Wu - 2004 - Annals of Pure and Applied Logic 125 (1-3):101-118.
    We prove that for any computably enumerable degree c, if it is cappable in the computably enumerable degrees, then there is a d.c.e. degree d such that c d = 0′ and c ∩ d = 0. Consequently, a computably enumerable degree is cappable if and only if it can be complemented by a nonzero d.c.e. degree. This gives a new characterization of the cappable degrees.
    Download  
     
    Export citation  
     
    Bookmark  
  • 2001 Annual Meeting of the Association for Symbolic Logic.Andre Scedrov - 2001 - Bulletin of Symbolic Logic 7 (3):420-435.
    Download  
     
    Export citation  
     
    Bookmark