Switch to: References

Add citations

You must login to add citations.
  1. Regularity properties on the generalized reals.Sy David Friedman, Yurii Khomskii & Vadim Kulikov - 2016 - Annals of Pure and Applied Logic 167 (4):408-430.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Perfect subsets of generalized baire spaces and long games.Philipp Schlicht - 2017 - Journal of Symbolic Logic 82 (4):1317-1355.
    We extend Solovay’s theorem about definable subsets of the Baire space to the generalized Baire spaceλλ, whereλis an uncountable cardinal withλ<λ= λ. In the first main theorem, we show that the perfect set property for all subsets ofλλthat are definable from elements ofλOrd is consistent relative to the existence of an inaccessible cardinal aboveλ. In the second main theorem, we introduce a Banach–Mazur type game of lengthλand show that the determinacy of this game, for all subsets ofλλthat are definable from (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • More on trees and Cohen reals.Giorgio Laguzzi & Brendan Stuber-Rousselle - 2020 - Mathematical Logic Quarterly 66 (2):173-181.
    In this paper we analyse some questions concerning trees on κ, both for the countable and the uncountable case, and the connections with Cohen reals. In particular, we provide a proof for one of the implications left open in [6, Question 5.2] about the diagram for regularity properties.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Special subsets of the generalized Cantor space and generalized Baire space.Michał Korch & Tomasz Weiss - 2020 - Mathematical Logic Quarterly 66 (4):418-437.
    In this paper, we are interested in parallels to the classical notions of special subsets in defined in the generalized Cantor and Baire spaces (2κ and ). We consider generalizations of the well‐known classes of special subsets, like Lusin sets, strongly null sets, concentrated sets, perfectly meagre sets, σ‐sets, γ‐sets, sets with the Menger, the Rothberger, or the Hurewicz property, but also of some less‐know classes like X‐small sets, meagre additive sets, Ramsey null sets, Marczewski, Silver, Miller, and Laver‐null sets. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Questions on generalised Baire spaces.Yurii Khomskii, Giorgio Laguzzi, Benedikt Löwe & Ilya Sharankou - 2016 - Mathematical Logic Quarterly 62 (4-5):439-456.
    We provide a list of open problems in the research area of generalised Baire spaces, compiled with the help of the participants of two workshops held in Amsterdam (2014) and Hamburg (2015).
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Full-splitting Miller trees and infinitely often equal reals.Yurii Khomskii & Giorgio Laguzzi - 2017 - Annals of Pure and Applied Logic 168 (8):1491-1506.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A null ideal for inaccessibles.Sy-David Friedman & Giorgio Laguzzi - 2017 - Archive for Mathematical Logic 56 (5-6):691-697.
    In this paper we introduce a tree-like forcing notion extending some properties of the random forcing in the context of 2κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^\kappa $$\end{document}, κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} inaccessible, and study its associated ideal of null sets and notion of measurability. This issue was addressed by Shelah ), arXiv:0904.0817, Problem 0.5) and concerns the definition of a forcing which is κκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations