Switch to: References

Add citations

You must login to add citations.
  1. Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Why ‘scaffolding’ is the wrong metaphor: the cognitive usefulness of mathematical representations.Brendan Larvor - 2018 - Synthese:1-14.
    The metaphor of scaffolding has become current in discussions of the cognitive help we get from artefacts, environmental affordances and each other. Consideration of mathematical tools and representations indicates that in these cases at least, scaffolding is the wrong picture, because scaffolding in good order is immobile, temporary and crude. Mathematical representations can be manipulated, are not temporary structures to aid development, and are refined. Reflection on examples from elementary algebra indicates that Menary is on the right track with his (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Why ‘scaffolding’ is the wrong metaphor: the cognitive usefulness of mathematical representations.Brendan Larvor - 2020 - Synthese 197 (9):3743-3756.
    The metaphor of scaffolding has become current in discussions of the cognitive help we get from artefacts, environmental affordances and each other. Consideration of mathematical tools and representations indicates that in these cases at least (and plausibly for others), scaffolding is the wrong picture, because scaffolding in good order is immobile, temporary and crude. Mathematical representations can be manipulated, are not temporary structures to aid development, and are refined. Reflection on examples from elementary algebra indicates that Menary is on the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What Philosophy of Mathematical Practice Can Teach Argumentation Theory About Diagrams and Pictures.Brendan Larvor - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 239--253.
    Download  
     
    Export citation  
     
    Bookmark   5 citations