Switch to: References

Citations of:

Understanding the Infinite

Cambridge, Mass.: Harvard University Press (1994)

Add citations

You must login to add citations.
  1. Categoricity by convention.Julien Murzi & Brett Topey - 2021 - Philosophical Studies 178 (10):3391-3420.
    On a widespread naturalist view, the meanings of mathematical terms are determined, and can only be determined, by the way we use mathematical language—in particular, by the basic mathematical principles we’re disposed to accept. But it’s mysterious how this can be so, since, as is well known, minimally strong first-order theories are non-categorical and so are compatible with countless non-isomorphic interpretations. As for second-order theories: though they typically enjoy categoricity results—for instance, Dedekind’s categoricity theorem for second-order and Zermelo’s quasi-categoricity theorem (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Studies in logical theory.John Dewey - 1903 - New York: AMS Press.
    Thought and its subject-matter, by J. Dewey.--Thought and its subject-matter: the antecedents of thought, by J. Dewey.--Thought and its subject-matter: the datum of thinking, by J. Dewey.--Thought and its subject-matter: the content and object of thought, by J. Dewey.-- Bosanquet's theory of judgment, by H. B. Thompson.--Typical stages in the development of judgement, by S. F. McLennan.--The nature of hypothesis, by M. L. Ashley.--Image and idea in logic, by W. C. Gore.--The logic of the pre-Socratic philosophy, by W.A. Heidel.--Valuation as (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • An empirically feasible approach to the epistemology of arithmetic.Markus Pantsar - 2014 - Synthese 191 (17):4201-4229.
    Recent years have seen an explosion of empirical data concerning arithmetical cognition. In this paper that data is taken to be philosophically important and an outline for an empirically feasible epistemological theory of arithmetic is presented. The epistemological theory is based on the empirically well-supported hypothesis that our arithmetical ability is built on a protoarithmetical ability to categorize observations in terms of quantities that we have already as infants and share with many nonhuman animals. It is argued here that arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • We hold these truths to be self-evident: But what do we mean by that?: We hold these truths to be self-evident.Stewart Shapiro - 2009 - Review of Symbolic Logic 2 (1):175-207.
    At the beginning of Die Grundlagen der Arithmetik [1884], Frege observes that “it is in the nature of mathematics to prefer proof, where proof is possible”. This, of course, is true, but thinkers differ on why it is that mathematicians prefer proof. And what of propositions for which no proof is possible? What of axioms? This talk explores various notions of self-evidence, and the role they play in various foundational systems, notably those of Frege and Zermelo. I argue that both (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Philosophy of mathematics.Leon Horsten - 2008 - Stanford Encyclopedia of Philosophy.
    If mathematics is regarded as a science, then the philosophy of mathematics can be regarded as a branch of the philosophy of science, next to disciplines such as the philosophy of physics and the philosophy of biology. However, because of its subject matter, the philosophy of mathematics occupies a special place in the philosophy of science. Whereas the natural sciences investigate entities that are located in space and time, it is not at all obvious that this is also the case (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Are Our Logical and Mathematical Concepts Highly Indeterminate?Hartry Field - 1994 - Midwest Studies in Philosophy 19 (1):391-429.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Quantification and ontology.Shaughan Lavine - 2000 - Synthese 124 (1-2):1-43.
    Quineans have taken the basic expression of ontological commitment to be an assertion of the form '' x '', assimilated to theEnglish ''there is something that is a ''. Here I take the existential quantifier to be introduced, not as an abbreviation for an expression of English, but via Tarskian semantics. I argue, contrary to the standard view, that Tarskian semantics in fact suggests a quite different picture: one in which quantification is of a substitutional type apparently first proposed by (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Wittgenstein as his own worst enemy: The case of gödel's theorem.Mark Steiner - 2001 - Philosophia Mathematica 9 (3):257-279.
    Remarks on the Foundations of Mathematics, Wittgenstein, despite his official 'mathematical nonrevisionism', slips into attempting to refute Gödel's theorem. Actually, Wittgenstein could have used Gödel's theorem to good effect, to support his view that proof, and even truth, are 'family resemblance' concepts. The reason that Wittgenstein did not see all this is that Gödel's theorem had become an icon of mathematical realism, and he was blinded by his own ideology. The essay is a reply to Juliet Floyd's work on Gödel: (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On arbitrary sets and ZFC.José Ferreirós - 2011 - Bulletin of Symbolic Logic 17 (3):361-393.
    Set theory deals with the most fundamental existence questions in mathematics—questions which affect other areas of mathematics, from the real numbers to structures of all kinds, but which are posed as dealing with the existence of sets. Especially noteworthy are principles establishing the existence of some infinite sets, the so-called “arbitrary sets.” This paper is devoted to an analysis of the motivating goal of studying arbitrary sets, usually referred to under the labels of quasi-combinatorialism or combinatorial maximality. After explaining what (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Open-endedness, schemas and ontological commitment.Nikolaj Jang Lee Linding Pedersen & Marcus Rossberg - 2010 - Noûs 44 (2):329-339.
    Second-order axiomatizations of certain important mathematical theories—such as arithmetic and real analysis—can be shown to be categorical. Categoricity implies semantic completeness, and semantic completeness in turn implies determinacy of truth-value. Second-order axiomatizations are thus appealing to realists as they sometimes seem to offer support for the realist thesis that mathematical statements have determinate truth-values. The status of second-order logic is a controversial issue, however. Worries about ontological commitment have been influential in the debate. Recently, Vann McGee has argued that one (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On Naturalizing the Epistemology of Mathematics.Jeffrey W. Roland - 2009 - Pacific Philosophical Quarterly 90 (1):63-97.
    In this paper, I consider an argument for the claim that any satisfactory epistemology of mathematics will violate core tenets of naturalism, i.e. that mathematics cannot be naturalized. I find little reason for optimism that the argument can be effectively answered.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The interval of motion in Leibniz's pacidius philalethi.Samuel Levey - 2003 - Noûs 37 (3):371–416.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Anything and Everything.Patrick Dieveney - 2013 - Erkenntnis 78 (1):119 - 140.
    Some novel solutions to problems in mathematics and philosophy involve employing schemas rather than quantified expressions to formulate certain propositions. Crucial to these solutions is an insistence that schematic generality is distinct from quantificational generality. Although many concede that schemas and quantified expressions function differently, the dominant view appears to be that the generality expressed by the former is ultimately reducible to the latter. In this paper, I argue against this view, which I call the 'Reductionist view'. But instead of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Finite mathematics.Shaughan Lavine - 1995 - Synthese 103 (3):389 - 420.
    A system of finite mathematics is proposed that has all of the power of classical mathematics. I believe that finite mathematics is not committed to any form of infinity, actual or potential, either within its theories or in the metalanguage employed to specify them. I show in detail that its commitments to the infinite are no stronger than those of primitive recursive arithmetic. The finite mathematics of sets is comprehensible and usable on its own terms, without appeal to any form (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Varieties of Finitism.Manuel Bremer - 2007 - Metaphysica 8 (2):131-148.
    I consider here several versions of finitism or conceptions that try to work around postulating sets of infinite size. Restricting oneself to the so-called potential infinite seems to rest either on temporal readings of infinity (or infinite series) or on anti-realistic background assumptions. Both these motivations may be considered problematic. Quine’s virtual set theory points out where strong assumptions of infinity enter into number theory, but is implicitly committed to infinity anyway. The approaches centring on the indefinitely large and the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Worlds as complete novels.A. P. Hazen - 1996 - Analysis 56 (1):33–38.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The early development of set theory.José Ferreirós - unknown - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematical determinacy and the transferability of aboutness.Stephen Pollard - 2007 - Synthese 159 (1):83-98.
    Competent speakers of natural languages can borrow reference from one another. You can arrange for your utterances of ‘Kirksville’ to refer to the same thing as my utterances of ‘Kirksville’. We can then talk about the same thing when we discuss Kirksville. In cases like this, you borrow “ aboutness ” from me by borrowing reference. Now suppose I wish to initiate a line of reasoning applicable to any prime number. I might signal my intention by saying, “Let p be (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On Russell's vulnerability to Russell's paradox.James Levine - 2001 - History and Philosophy of Logic 22 (4):207-231.
    Influenced by G. E. Moore, Russell broke with Idealism towards the end of 1898; but in later years he characterized his meeting Peano in August 1900 as ?the most important event? in ?the most important year in my intellectual life?. While Russell discovered his paradox during his post-Peano period, the question arises whether he was already committed, during his pre-Peano Moorean period, to assumptions from which his paradox may be derived. Peter Hylton has argued that the pre-Peano Russell was thus (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Aggregate theory versus set theory.Hartley Slater - 2003 - Erkenntnis 59 (2):189 - 202.
    Maddy's (1990) arguments against Aggregate Theory were undermined by the shift in her position in 1997. The present paper considers Aggregate Theory in the light of this, and the recent search for `New Axioms for Mathematics'. If Set Theory is the part-whole theory of singletons, then identifying singletons with their single members collapses Set Theory into Aggregate Theory. But if singletons are not identical to their single members, then they are not extensional objects and so are not a basis for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Are Mathematical Theories Reducible to Non-analytic Foundations?Stathis Livadas - 2013 - Axiomathes 23 (1):109-135.
    In this article I intend to show that certain aspects of the axiomatical structure of mathematical theories can be, by a phenomenologically motivated approach, reduced to two distinct types of idealization, the first-level idealization associated with the concrete intuition of the objects of mathematical theories as discrete, finite sign-configurations and the second-level idealization associated with the intuition of infinite mathematical objects as extensions over constituted temporality. This is the main standpoint from which I review Cantor’s conception of infinite cardinalities and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rigour, Proof and Soundness.Oliver M. W. Tatton-Brown - 2020 - Dissertation, University of Bristol
    The initial motivating question for this thesis is what the standard of rigour in modern mathematics amounts to: what makes a proof rigorous, or fail to be rigorous? How is this judged? A new account of rigour is put forward, aiming to go some way to answering these questions. Some benefits of the norm of rigour on this account are discussed. The account is contrasted with other remarks that have been made about mathematical proof and its workings, and is tested (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Forever Finite: The Case Against Infinity (Expanded Edition).Kip K. Sewell - 2023 - Alexandria, VA: Rond Books.
    EXPANDED EDITION (eBook): -/- Infinity Is Not What It Seems...Infinity is commonly assumed to be a logical concept, reliable for conducting mathematics, describing the Universe, and understanding the divine. Most of us are educated to take for granted that there exist infinite sets of numbers, that lines contain an infinite number of points, that space is infinite in expanse, that time has an infinite succession of events, that possibilities are infinite in quantity, and over half of the world’s population believes (...)
    Download  
     
    Export citation  
     
    Bookmark