Citations of:
An empirically feasible approach to the epistemology of arithmetic
Synthese 191 (17):42014229 (2014)
Add citations
You must login to add citations.


This volume covers a wide range of topics in the most recent debates in the philosophy of mathematics, and is dedicated to how semantic, epistemological, ontological and logical issues interact in the attempt to give a satisfactory picture of mathematical knowledge. The essays collected here explore the semantic and epistemic problems raised by different kinds of mathematical objects, by their characterization in terms of axiomatic theories, and by the objectivity of both pure and applied mathematics. They investigate controversial aspects of (...) 

According to one of the most powerful paradigms explaining the meaning of the concept of natural number, natural numbers get a large part of their conceptual content from core cognitive abilities. Carey’s bootstrapping provides a model of the role of core cognition in the creation of mature mathematical concepts. In this paper, I conduct conceptual analyses of various theories within this paradigm, concluding that the theories based on the ability to subitize, or on the ability to approximate quantities, or both, (...) 

The axiom of infinity states that infinite sets exist. I will argue that this axiom lacks justification. I start by showing that the axiom is not selfevident, so it needs separate justification. Following Maddy’s :481–511, 1988) distinction, I argue that the axiom of infinity lacks both intrinsic and extrinsic justification. Crucial to my project is Skolem’s From Frege to Gödel: a source book in mathematical logic, 1879–1931, Cambridge, Harvard University Press, pp. 290–301, 1922) distinction between a theory of real sets, (...) 

The basic human ability to treat quantitative information can be divided into two parts. With protoarithmetical ability, based on the core cognitive abilities for subitizing and estimation, numerosities can be treated in a limited and/or approximate manner. With arithmetical ability, numerosities are processed (counted, operated on) systematically in a discrete, linear, and unbounded manner. In this paper, I study the theory of enculturation as presented by Menary (2015) as a possible explanation of how we make the move from the protoarithmetical (...) 

In this paper I study the development of arithmetical cognition with the focus on metaphorical thinking. In an approach developing on Lakoff and Núñez, I propose one particular conceptual metaphor, the Process → Object Metaphor, as a key element in understanding the development of mathematical thinking. 



In the literature on enculturation—the thesis according to which higher cognitive capacities result from transformations in the brain driven by culture—numerical cognition is often cited as an example. A consequence of the enculturation account for numerical cognition is that individuals cannot acquire numerical competence if a symbolic system for numbers is not available in their cultural environment. This poses a problem for the explanation of the historical origins of numerical concepts and symbols. When a numeral system had not been created (...) 

Beck presents an outline of the procedure of bootstrapping of integer concepts, with the purpose of explicating the account of Carey. According to that theory, integer concepts are acquired through a process of inductive and analogous reasoning based on the object tracking system, which allows individuating objects in a parallel fashion. Discussing the bootstrapping theory, Beck dismisses what he calls the "deviantinterpretation challenge"—the possibility that the bootstrapped integer sequence does not follow a linear progression after some point—as being general to (...) 



Marr’s seminal distinction between computational, algorithmic, and implementational levels of analysis has inspired research in cognitive science for more than 30 years. According to a widelyused paradigm, the modelling of cognitive processes should mainly operate on the computational level and be targeted at the idealised competence, rather than the actual performance of cognisers in a specific domain. In this paper, we explore how this paradigm can be adopted and revised to understand mathematical problem solving. The computationallevel approach applies methods from (...) 

Arithmetical cognition is the result of enculturation. On a personal level of analysis, enculturation is a process of structured cultural learning that leads to the acquisition of evolutionarily recent, socioculturally shaped arithmetical practices. On a subpersonal level, enculturation is realized by learning driven plasticity and learning driven bodily adaptability, which leads to the emergence of new neural circuitry and bodily action patterns. While learning driven plasticity in the case of arithmetical practices is not consistent with modularist theories of mental architecture, (...) 

In computational complexity theory, decision problems are divided into complexity classes based on the amount of computational resources it takes for algorithms to solve them. In theoretical computer science, it is commonly accepted that only functions for solving problems in the complexity class P, solvable by a deterministic Turing machine in polynomial time, are considered to be tractable. In cognitive science and philosophy, this tractability result has been used to argue that only functions in P can feasibly work as computational (...) 

In this paper I develop a philosophical account of actual mathematical infinity that does not demand ontologically or epistemologically problematic assumptions. The account is based on a simple metaphor in which we think of indefinitely continuing processes as defining objects. It is shown that such a metaphor is valid in terms of mathematical practice, as well as in line with empirical data on arithmetical cognition. 

In this paper we explore the interpretation of quantity expressions in Yudja, an indigenous language spoken in the Amazonian basin, showing that while the language allows reference to exact cardinalities, it does not generally allow reference to exact measure values. It does, however, allow nonexact comparison along continuous dimensions. We use this data to argue that the grammar of exact measurement is distinct from a grammar allowing the expression of exact cardinalities, and that the grammar of counting and the grammar (...) 

In Pantsar (2014), an outline for an empirically feasible epistemological theory of arithmetic is presented. According to that theory, arithmetical knowledge is based on biological primitives but in the resulting empirical context develops an essentially a priori character. Such contextual a priori theory of arithmetical knowledge can explain two of the three characteristics that are usually associated with mathematical knowledge: that it appears to be a priori and objective. In this paper it is argued that it can also explain the (...) 

In early analytic philosophy, one of the most central questions concerned the status of arithmetical objects. Frege argued against the popular conception that we arrive at natural numbers with a psychological process of abstraction. Instead, he wanted to show that arithmetical truths can be derived from the truths of logic, thus eliminating all psychological components. Meanwhile, Dedekind and Peano developed axiomatic systems of arithmetic. The differences between the logicist and axiomatic approaches turned out to be philosophical as well as mathematical. (...) 

Abstract In the new millennium there have been important empirical developments in the philosophy of mathematics. One of these is the socalled “Empirical Philosophy of Mathematics”(EPM) of Buldt, Löwe, Müller and MüllerHill, which aims to complement the methodology of the philosophy of mathematics with empirical work. Among other things, this includes surveys of mathematicians, which EPM believes to give philosophically important results. In this paper I take a critical look at the sociological part of EPM as a case study of (...) 