Switch to: References

Add citations

You must login to add citations.
  1. Absence Perception and the Philosophy of Zero.Neil Barton - 2020 - Synthese 197 (9):3823-3850.
    Zero provides a challenge for philosophers of mathematics with realist inclinations. On the one hand it is a bona fide cardinal number, yet on the other it is linked to ideas of nothingness and non-being. This paper provides an analysis of the epistemology and metaphysics of zero. We develop several constraints and then argue that a satisfactory account of zero can be obtained by integrating an account of numbers as properties of collections, work on the philosophy of absences, and recent (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Objectivity, Realism, and Proof. FilMat Studies in the Philosophy of Mathematics.Francesca Boccuni & Andrea Sereni (eds.) - 2016 - Cham, Switzerland: Springer International Publishing.
    This volume covers a wide range of topics in the most recent debates in the philosophy of mathematics, and is dedicated to how semantic, epistemological, ontological and logical issues interact in the attempt to give a satisfactory picture of mathematical knowledge. The essays collected here explore the semantic and epistemic problems raised by different kinds of mathematical objects, by their characterization in terms of axiomatic theories, and by the objectivity of both pure and applied mathematics. They investigate controversial aspects of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cognitive Structuralism: Explaining the Regularity of the Natural Numbers Progression.Paula Quinon - forthcoming - Review of Philosophy and Psychology:1-23.
    According to one of the most powerful paradigms explaining the meaning of the concept of natural number, natural numbers get a large part of their conceptual content from core cognitive abilities. Carey’s bootstrapping provides a model of the role of core cognition in the creation of mature mathematical concepts. In this paper, I conduct conceptual analyses of various theories within this paradigm, concluding that the theories based on the ability to subitize, or on the ability to approximate quantities, or both, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Why Believe Infinite Sets Exist?Andrei Mărăşoiu - 2018 - Axiomathes 28 (4):447-460.
    The axiom of infinity states that infinite sets exist. I will argue that this axiom lacks justification. I start by showing that the axiom is not self-evident, so it needs separate justification. Following Maddy’s :481–511, 1988) distinction, I argue that the axiom of infinity lacks both intrinsic and extrinsic justification. Crucial to my project is Skolem’s From Frege to Gödel: a source book in mathematical logic, 1879–1931, Cambridge, Harvard University Press, pp. 290–301, 1922) distinction between a theory of real sets, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Enculturated Move From Proto-Arithmetic to Arithmetic.Markus Pantsar - 2019 - Frontiers in Psychology 10.
    The basic human ability to treat quantitative information can be divided into two parts. With proto-arithmetical ability, based on the core cognitive abilities for subitizing and estimation, numerosities can be treated in a limited and/or approximate manner. With arithmetical ability, numerosities are processed (counted, operated on) systematically in a discrete, linear, and unbounded manner. In this paper, I study the theory of enculturation as presented by Menary (2015) as a possible explanation of how we make the move from the proto-arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Early Numerical Cognition and Mathematical Processes.Markus Pantsar - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):285-304.
    In this paper I study the development of arithmetical cognition with the focus on metaphorical thinking. In an approach developing on Lakoff and Núñez, I propose one particular conceptual metaphor, the Process → Object Metaphor, as a key element in understanding the development of mathematical thinking.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the Development of Geometric Cognition: Beyond Nature Vs. Nurture.Markus Pantsar - forthcoming - Philosophical Psychology:1-22.
    Download  
     
    Export citation  
     
    Bookmark  
  • Enculturation and the Historical Origins of Number Words and Concepts.César Frederico dos Santos - 2021 - Synthese 199 (3-4):9257-9287.
    In the literature on enculturation—the thesis according to which higher cognitive capacities result from transformations in the brain driven by culture—numerical cognition is often cited as an example. A consequence of the enculturation account for numerical cognition is that individuals cannot acquire numerical competence if a symbolic system for numbers is not available in their cultural environment. This poses a problem for the explanation of the historical origins of numerical concepts and symbols. When a numeral system had not been created (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Bootstrapping of Integer Concepts: The Stronger Deviant-Interpretation Challenge.Markus Pantsar - 2021 - Synthese 199 (3-4):5791-5814.
    Beck presents an outline of the procedure of bootstrapping of integer concepts, with the purpose of explicating the account of Carey. According to that theory, integer concepts are acquired through a process of inductive and analogous reasoning based on the object tracking system, which allows individuating objects in a parallel fashion. Discussing the bootstrapping theory, Beck dismisses what he calls the "deviant-interpretation challenge"—the possibility that the bootstrapped integer sequence does not follow a linear progression after some point—as being general to (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical Cognition and Enculturation: Introduction to the Synthese Special Issue.Markus Pantsar - 2020 - Synthese 197 (9):3647-3655.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   5 citations  
  • A Fresh Look at Research Strategies in Computational Cognitive Science: The Case of Enculturated Mathematical Problem Solving.Regina E. Fabry & Markus Pantsar - 2019 - Synthese 198 (4):3221-3263.
    Marr’s seminal distinction between computational, algorithmic, and implementational levels of analysis has inspired research in cognitive science for more than 30 years. According to a widely-used paradigm, the modelling of cognitive processes should mainly operate on the computational level and be targeted at the idealised competence, rather than the actual performance of cognisers in a specific domain. In this paper, we explore how this paradigm can be adopted and revised to understand mathematical problem solving. The computational-level approach applies methods from (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The cerebral, extra-cerebral bodily, and socio-cultural dimensions of enculturated arithmetical cognition.Regina E. Fabry - 2020 - Synthese 197 (9):3685-3720.
    Arithmetical cognition is the result of enculturation. On a personal level of analysis, enculturation is a process of structured cultural learning that leads to the acquisition of evolutionarily recent, socio-culturally shaped arithmetical practices. On a sub-personal level, enculturation is realized by learning driven plasticity and learning driven bodily adaptability, which leads to the emergence of new neural circuitry and bodily action patterns. While learning driven plasticity in the case of arithmetical practices is not consistent with modularist theories of mental architecture, (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   3 citations  
  • Descriptive Complexity, Computational Tractability, and the Logical and Cognitive Foundations of Mathematics.Markus Pantsar - 2021 - Minds and Machines 31 (1):75-98.
    In computational complexity theory, decision problems are divided into complexity classes based on the amount of computational resources it takes for algorithms to solve them. In theoretical computer science, it is commonly accepted that only functions for solving problems in the complexity class P, solvable by a deterministic Turing machine in polynomial time, are considered to be tractable. In cognitive science and philosophy, this tractability result has been used to argue that only functions in P can feasibly work as computational (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • In Search of $$\aleph _{0}$$ ℵ 0 : How Infinity Can Be Created.Markus Pantsar - 2015 - Synthese 192 (8):2489-2511.
    In this paper I develop a philosophical account of actual mathematical infinity that does not demand ontologically or epistemologically problematic assumptions. The account is based on a simple metaphor in which we think of indefinitely continuing processes as defining objects. It is shown that such a metaphor is valid in terms of mathematical practice, as well as in line with empirical data on arithmetical cognition.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Quantity Evaluations in Yudja: Judgements, Language and Cultural Practice.Suzi Lima & Susan Rothstein - 2020 - Synthese 197 (9):3851-3873.
    In this paper we explore the interpretation of quantity expressions in Yudja, an indigenous language spoken in the Amazonian basin, showing that while the language allows reference to exact cardinalities, it does not generally allow reference to exact measure values. It does, however, allow non-exact comparison along continuous dimensions. We use this data to argue that the grammar of exact measurement is distinct from a grammar allowing the expression of exact cardinalities, and that the grammar of counting and the grammar (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Modal Status of Contextually A Priori Arithmetical Truths.Markus Pantsar - 2016 - In Andrea Sereni & Francesca Boccuni (eds.), Objectivity, Realism, and Proof. Springer International Publishing. pp. 67-79.
    In Pantsar (2014), an outline for an empirically feasible epistemological theory of arithmetic is presented. According to that theory, arithmetical knowledge is based on biological primitives but in the resulting empirical context develops an essentially a priori character. Such contextual a priori theory of arithmetical knowledge can explain two of the three characteristics that are usually associated with mathematical knowledge: that it appears to be a priori and objective. In this paper it is argued that it can also explain the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Frege, Dedekind, and the Modern Epistemology of Arithmetic.Markus Pantsar - 2016 - Acta Analytica 31 (3):297-318.
    In early analytic philosophy, one of the most central questions concerned the status of arithmetical objects. Frege argued against the popular conception that we arrive at natural numbers with a psychological process of abstraction. Instead, he wanted to show that arithmetical truths can be derived from the truths of logic, thus eliminating all psychological components. Meanwhile, Dedekind and Peano developed axiomatic systems of arithmetic. The differences between the logicist and axiomatic approaches turned out to be philosophical as well as mathematical. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Assessing the “Empirical Philosophy of Mathematics”.Markus Pantsar - 2015 - Discipline Filosofiche:111-130.
    Abstract In the new millennium there have been important empirical developments in the philosophy of mathematics. One of these is the so-called “Empirical Philosophy of Mathematics”(EPM) of Buldt, Löwe, Müller and Müller-Hill, which aims to complement the methodology of the philosophy of mathematics with empirical work. Among other things, this includes surveys of mathematicians, which EPM believes to give philosophically important results. In this paper I take a critical look at the sociological part of EPM as a case study of (...)
    Download  
     
    Export citation  
     
    Bookmark