Switch to: References

Add citations

You must login to add citations.
  1. The recursively enumerable alpha-degrees are dense.Richard A. Shore - 1976 - Annals of Mathematical Logic 9 (1/2):123.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Types of simple α-recursively enumerable sets.Anne Leggett & Richard A. Shore - 1976 - Journal of Symbolic Logic 41 (3):681-694.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Fragments of Kripke–Platek set theory and the metamathematics of $$\alpha $$ α -recursion theory.Sy-David Friedman, Wei Li & Tin Lok Wong - 2016 - Archive for Mathematical Logic 55 (7-8):899-924.
    The foundation scheme in set theory asserts that every nonempty class has an ∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document}-minimal element. In this paper, we investigate the logical strength of the foundation principle in basic set theory and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-recursion theory. We take KP set theory without foundation as the base theory. We show that KP-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^-$$\end{document} + Π1\documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Least upper bounds for minimal pairs of α-R.E. α-degrees.Manuel Lerman - 1974 - Journal of Symbolic Logic 39 (1):49-56.
    Download  
     
    Export citation  
     
    Bookmark  
  • The role of true finiteness in the admissible recursively enumerable degrees.Noam Greenberg - 2005 - Bulletin of Symbolic Logic 11 (3):398-410.
    We show, however, that this is not always the case.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Friedberg Numbering in Fragments of Peano Arithmetic and α-Recursion Theory.Wei Li - 2013 - Journal of Symbolic Logic 78 (4):1135-1163.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Degrees of functionals.Dag Normann - 1979 - Annals of Mathematical Logic 16 (3):269.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the embedding of |alpha-recursive presentable lattices into the α-recursive degrees below 0'.Dong Ping Yang - 1984 - Journal of Symbolic Logic 49 (2):488 - 502.
    Download  
     
    Export citation  
     
    Bookmark  
  • One hundred and two problems in mathematical logic.Harvey Friedman - 1975 - Journal of Symbolic Logic 40 (2):113-129.
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • An extension of the nondiamond theorem in classical and α-recursion theory.Klaus Ambos-Spies - 1984 - Journal of Symbolic Logic 49 (2):586-607.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The theory of the metarecursively enumerable degrees.Noam Greenberg, Richard A. Shore & Theodore A. Slaman - 2006 - Journal of Mathematical Logic 6 (1):49-68.
    Sacks [23] asks if the metarecursively enumerable degrees are elementarily equivalent to the r.e. degrees. In unpublished work, Slaman and Shore proved that they are not. This paper provides a simpler proof of that result and characterizes the degree of the theory as [Formula: see text] or, equivalently, that of the truth set of [Formula: see text].
    Download  
     
    Export citation  
     
    Bookmark  
  • Inadmissibility, tame R.E. sets and the admissible collapse.Wolfgang Maass - 1978 - Annals of Mathematical Logic 13 (2):149-170.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The α-finite injury method.G. E. Sacks & S. G. Simpson - 1972 - Annals of Mathematical Logic 4 (4):343-367.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • On alpha- and beta-recursively enumerable degrees.Wolfgang Maass - 1979 - Annals of Mathematical Logic 16 (3):205.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hyperhypersimple supersets in admissible recursion theory.C. T. Chong - 1983 - Journal of Symbolic Logic 48 (1):185-192.
    Download  
     
    Export citation  
     
    Bookmark