Switch to: References

Add citations

You must login to add citations.
  1. Degree theory on ℵω.C. T. Chong & Sy D. Friedman - 1983 - Annals of Pure and Applied Logic 24 (1):87-97.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fragments of Kripke–Platek set theory and the metamathematics of $$\alpha $$ α -recursion theory.Sy-David Friedman, Wei Li & Tin Lok Wong - 2016 - Archive for Mathematical Logic 55 (7-8):899-924.
    The foundation scheme in set theory asserts that every nonempty class has an ∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document}-minimal element. In this paper, we investigate the logical strength of the foundation principle in basic set theory and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-recursion theory. We take KP set theory without foundation as the base theory. We show that KP-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^-$$\end{document} + Π1\documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Sacks density theorem and Σ2-bounding.Marcia J. Groszek, Michael E. Mytilinaios & Theodore A. Slaman - 1996 - Journal of Symbolic Logic 61 (2):450 - 467.
    The Sacks Density Theorem [7] states that the Turing degrees of the recursively enumerable sets are dense. We show that the Density Theorem holds in every model of P - + BΣ 2 . The proof has two components: a lemma that in any model of P - + BΣ 2 , if B is recursively enumerable and incomplete then IΣ 1 holds relative to B and an adaptation of Shore's [9] blocking technique in α-recursion theory to models of arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The role of true finiteness in the admissible recursively enumerable degrees.Noam Greenberg - 2005 - Bulletin of Symbolic Logic 11 (3):398-410.
    We show, however, that this is not always the case.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Hierarchy of Computably Enumerable Degrees.Rod Downey & Noam Greenberg - 2018 - Bulletin of Symbolic Logic 24 (1):53-89.
    We introduce a new hierarchy of computably enumerable degrees. This hierarchy is based on computable ordinal notations measuring complexity of approximation of${\rm{\Delta }}_2^0$functions. The hierarchy unifies and classifies the combinatorics of a number of diverse constructions in computability theory. It does so along the lines of the high degrees (Martin) and the array noncomputable degrees (Downey, Jockusch, and Stob). The hierarchy also gives a number of natural definability results in the c.e. degrees, including a definable antichain.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Tabular degrees in \Ga-recursion theory.Colin Bailey & Rod Downey - 1992 - Annals of Pure and Applied Logic 55 (3):205-236.
    Bailey, C. and R. Downey, Tabular degrees in \Ga-recursion theory, Annals of Pure and Applied Logic 55 205–236. We introduce several generalizations of the truth-table and weak-truth-table reducibilities to \Ga-recursion theory. A number of examples are given of theorems that lift from \Gw-recursion theory, and of theorems that do not. In particular it is shown that the regular sets theorem fails and that not all natural generalizations of wtt are the same.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the embedding of |alpha-recursive presentable lattices into the α-recursive degrees below 0'.Dong Ping Yang - 1984 - Journal of Symbolic Logic 49 (2):488 - 502.
    Download  
     
    Export citation  
     
    Bookmark  
  • The theory of the metarecursively enumerable degrees.Noam Greenberg, Richard A. Shore & Theodore A. Slaman - 2006 - Journal of Mathematical Logic 6 (1):49-68.
    Sacks [23] asks if the metarecursively enumerable degrees are elementarily equivalent to the r.e. degrees. In unpublished work, Slaman and Shore proved that they are not. This paper provides a simpler proof of that result and characterizes the degree of the theory as [Formula: see text] or, equivalently, that of the truth set of [Formula: see text].
    Download  
     
    Export citation  
     
    Bookmark  
  • Intermediate β-r.E. Degrees and the half-jump.Steven Homer - 1983 - Journal of Symbolic Logic 48 (3):790-796.
    Download  
     
    Export citation  
     
    Bookmark  
  • Inadmissibility, tame R.E. sets and the admissible collapse.Wolfgang Maass - 1978 - Annals of Mathematical Logic 13 (2):149-170.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A lift of a theorem of Friedberg: A Banach-Mazur functional that coincides with no α-recursive functional on the class of α-recursive functions.Robert A. di Paola - 1981 - Journal of Symbolic Logic 46 (2):216-232.
    R. M. Friedberg demonstrated the existence of a recursive functional that agrees with no Banach-Mazur functional on the class of recursive functions. In this paper Friedberg's result is generalized to both α-recursive functionals and weak α-recursive functionals for all admissible ordinals α such that $\lambda , where α * is the Σ 1 -projectum of α and λ is the Σ 2 -cofinality of α. The theorem is also established for the metarecursive case, α = ω 1 , where α (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Discrete transfinite computation models.Philip D. Welch - 2011 - In S. B. Cooper & Andrea Sorbi (eds.), Computability in Context: Computation and Logic in the Real World. World Scientific. pp. 375--414.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On alpha- and beta-recursively enumerable degrees.Wolfgang Maass - 1979 - Annals of Mathematical Logic 16 (3):205.
    Download  
     
    Export citation  
     
    Bookmark   3 citations