Switch to: References

Add citations

You must login to add citations.
  1. Theory of Quantum Computation and Philosophy of Mathematics. Part II.Krzysztof Wójtowicz - forthcoming - Logic and Logical Philosophy:1.
    Download  
     
    Export citation  
     
    Bookmark  
  • Non‐Factualism Versus Nominalism.Matteo Plebani - 2017 - Pacific Philosophical Quarterly 98 (3).
    The platonism/nominalism debate in the philosophy of mathematics concerns the question whether numbers and other mathematical objects exist. Platonists believe the answer to be in the positive, nominalists in the negative. According to non-factualists, the question is ‘moot’, in the sense that it lacks a correct answer. Elaborating on ideas from Stephen Yablo, this article articulates a non-factualist position in the philosophy of mathematics and shows how the case for non-factualism entails that standard arguments for rival positions fail. In particular, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Grounding and the indispensability argument.David Liggins - 2016 - Synthese 193 (2):531-548.
    There has been much discussion of the indispensability argument for the existence of mathematical objects. In this paper I reconsider the debate by using the notion of grounding, or non-causal dependence. First of all, I investigate what proponents of the indispensability argument should say about the grounding of relations between physical objects and mathematical ones. This reveals some resources which nominalists are entitled to use. Making use of these resources, I present a neglected but promising response to the indispensability argument—a (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Good weasel hunting.Robert Knowles & David Liggins - 2015 - Synthese 192 (10):3397-3412.
    The ‘indispensability argument’ for the existence of mathematical objects appeals to the role mathematics plays in science. In a series of publications, Joseph Melia has offered a distinctive reply to the indispensability argument. The purpose of this paper is to clarify Melia’s response to the indispensability argument and to advise Melia and his critics on how best to carry forward the debate. We will begin by presenting Melia’s response and diagnosing some recent misunderstandings of it. Then we will discuss four (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Reasoning Under a Presupposition and the Export Problem: The Case of Applied Mathematics.Mary Leng - 2017 - Australasian Philosophical Review 1 (2):133-142.
    ABSTRACT‘expressionist’ accounts of applied mathematics seek to avoid the apparent Platonistic commitments of our scientific theories by holding that we ought only to believe their mathematics-free nominalistic content. The notion of ‘nominalistic content’ is, however, notoriously slippery. Yablo's account of non-catastrophic presupposition failure offers a way of pinning down this notion. However, I argue, its reliance on possible worlds machinery begs key questions against Platonism. I propose instead that abstract expressionists follow Geoffrey Hellman's lead in taking the assertoric content of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Representational indispensability and ontological commitment.John Heron - 2020 - Thought: A Journal of Philosophy 9 (2):105-114.
    Recent debates about mathematical ontology are guided by the view that Platonism's prospects depend on mathematics' explanatory role in science. If mathematics plays an explanatory role, and in the right kind of way, this carries ontological commitment to mathematical objects. Conversely, the assumption goes, if mathematics merely plays a representational role then our world-oriented uses of mathematics fail to commit us to mathematical objects. I argue that it is a mistake to think that mathematical representation is necessarily ontologically innocent and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Belief Expressionist Explanation of Divine Conceptualist Mathematics.David M. Freeman - 2022 - Metaphysica 23 (1):15-26.
    Many have pointed out that the utility of mathematical objects is somewhat disconnected from their ontological status. For example, one might argue that arithmetic is useful whether or not numbers exist. We explore this phenomenon in the context of Divine Conceptualism, which claims that mathematical objects exist as thoughts in the divine mind. While not arguing against DC claims, we argue that DC claims can lead to epistemological uncertainty regarding the ontological status of mathematical objects. This weakens DC attempts to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Towards a Fictionalist Philosophy of Mathematics.Robert Knowles - 2015 - Dissertation, University of Manchester
    In this thesis, I aim to motivate a particular philosophy of mathematics characterised by the following three claims. First, mathematical sentences are generally speaking false because mathematical objects do not exist. Second, people typically use mathematical sentences to communicate content that does not imply the existence of mathematical objects. Finally, in using mathematical language in this way, speakers are not doing anything out of the ordinary: they are performing straightforward assertions. In Part I, I argue that the role played by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematics and the world: explanation and representation.John-Hamish Heron - 2017 - Dissertation, King’s College London
    Download  
     
    Export citation  
     
    Bookmark