Switch to: References

Add citations

You must login to add citations.
  1. Ontology of Divinity.Mirosław Szatkowski (ed.) - 2024 - Boston: De Gruyter.
    This volume announces a new era in the philosophy of God. Many of its contributions work to create stronger links between the philosophy of God, on the one hand, and mathematics or metamathematics, on the other hand. It is about not only the possibilities of applying mathematics or metamathematics to questions about God, but also the reverse question: Does the philosophy of God have anything to offer mathematics or metamathematics? The remaining contributions tackle stereotypes in the philosophy of religion. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Infinite Regress Arguments as per impossibile Arguments in Aristotle: De Caelo 300a30–b1, Posterior Analytics 72b5–10, Physics V.2 225b33–226a10. [REVIEW]Matthew Duncombe - 2022 - Rhizomata 10 (2):262-282.
    Infinite regress arguments are a powerful tool in Aristotle, but this style of argument has received relatively little attention. Improving our understanding of infinite regress arguments has become pressing since recent scholars have pointed out that it is not clear whether Aristotle’s infinite regress arguments are, in general, effective or indeed what the logical structure of these arguments is. One obvious approach would be to hold that Aristotle takes infinite regress arguments to be per impossibile arguments, which derive an infinite (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Generality Explained.Øystein Linnebo - 2022 - Journal of Philosophy 119 (7):349-379.
    What explains the truth of a universal generalization? Two types of explanation can be distinguished. While an ‘instance-based explanation’ proceeds via some or all instances of the generalization, a ‘generic explanation’ is independent of the instances, relying instead on completely general facts about the properties or operations involved in the generalization. This intuitive distinction is analyzed by means of a truthmaker semantics, which also sheds light on the correct logic of quantification. On the most natural version of the semantics, this (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Fermat’s last theorem proved in Hilbert arithmetic. II. Its proof in Hilbert arithmetic by the Kochen-Specker theorem with or without induction.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (10):1-52.
    The paper is a continuation of another paper published as Part I. Now, the case of “n=3” is inferred as a corollary from the Kochen and Specker theorem (1967): the eventual solutions of Fermat’s equation for “n=3” would correspond to an admissible disjunctive division of qubit into two absolutely independent parts therefore versus the contextuality of any qubit, implied by the Kochen – Specker theorem. Incommensurability (implied by the absence of hidden variables) is considered as dual to quantum contextuality. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Divergent Potentialism: A Modal Analysis With an Application to Choice Sequences.Ethan Brauer, Øystein Linnebo & Stewart Shapiro - 2022 - Philosophia Mathematica 30 (2):143-172.
    Modal logic has been used to analyze potential infinity and potentialism more generally. However, the standard analysis breaks down in cases of divergent possibilities, where there are two or more possibilities that can be individually realized but which are jointly incompatible. This paper has three aims. First, using the intuitionistic theory of choice sequences, we motivate the need for a modal analysis of divergent potentialism and explain the challenges this involves. Then, using Beth–Kripke semantics for intuitionistic logic, we overcome those (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • In defense of Countabilism.David Builes & Jessica M. Wilson - 2022 - Philosophical Studies 179 (7):2199-2236.
    Inspired by Cantor's Theorem (CT), orthodoxy takes infinities to come in different sizes. The orthodox view has had enormous influence in mathematics, philosophy, and science. We will defend the contrary view---Countablism---according to which, necessarily, every infinite collection (set or plurality) is countable. We first argue that the potentialist or modal strategy for treating Russell's Paradox, first proposed by Parsons (2000) and developed by Linnebo (2010, 2013) and Linnebo and Shapiro (2019), should also be applied to CT, in a way that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Potential in Frege’s Theorem.Will Stafford - 2023 - Review of Symbolic Logic 16 (2):553-577.
    Is a logicist bound to the claim that as a matter of analytic truth there is an actual infinity of objects? If Hume’s Principle is analytic then in the standard setting the answer appears to be yes. Hodes’s work pointed to a way out by offering a modal picture in which only a potential infinity was posited. However, this project was abandoned due to apparent failures of cross-world predication. We re-explore this idea and discover that in the setting of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The modal logic of set-theoretic potentialism and the potentialist maximality principles.Joel David Hamkins & Øystein Linnebo - 2022 - Review of Symbolic Logic 15 (1):1-35.
    We analyze the precise modal commitments of several natural varieties of set-theoretic potentialism, using tools we develop for a general model-theoretic account of potentialism, building on those of Hamkins, Leibman and Löwe [14], including the use of buttons, switches, dials and ratchets. Among the potentialist conceptions we consider are: rank potentialism, Grothendieck–Zermelo potentialism, transitive-set potentialism, forcing potentialism, countable-transitive-model potentialism, countable-model potentialism, and others. In each case, we identify lower bounds for the modal validities, which are generally either S4.2 or S4.3, (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Mathematical and Moral Disagreement.Silvia Jonas - 2020 - Philosophical Quarterly 70 (279):302-327.
    The existence of fundamental moral disagreements is a central problem for moral realism and has often been contrasted with an alleged absence of disagreement in mathematics. However, mathematicians do in fact disagree on fundamental questions, for example on which set-theoretic axioms are true, and some philosophers have argued that this increases the plausibility of moral vis-à-vis mathematical realism. I argue that the analogy between mathematical and moral disagreement is not as straightforward as those arguments present it. In particular, I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Logic of Potential Infinity.Roy T. Cook - forthcoming - Philosophia Mathematica.
    Michael Dummett argues that acceptance of potentially infinite collections requires that we abandon classical logic and restrict ourselves to intuitionistic logic. In this paper we examine whether Dummett is correct. After developing two detailed accounts of what, exactly, it means for a concept to be potentially infinite (based on ideas due to Charles McCarty and Øystein Linnebo, respectively), we construct a Kripke structure that contains a natural number structure that satisfies both accounts. This model supports a logic much stronger than (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Platonism in the Philosophy of Mathematics.Øystein Linnebo - forthcoming - Stanford Encyclopedia of Philosophy.
    Platonism about mathematics (or mathematical platonism) isthe metaphysical view that there are abstract mathematical objectswhose existence is independent of us and our language, thought, andpractices. Just as electrons and planets exist independently of us, sodo numbers and sets. And just as statements about electrons and planetsare made true or false by the objects with which they are concerned andthese objects' perfectly objective properties, so are statements aboutnumbers and sets. Mathematical truths are therefore discovered, notinvented., Existence. There are mathematical objects.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • A Taxonomy for Set-Theoretic Potentialism.Davide Sutto - 2024 - Philosophia Mathematica:1-28.
    Set-theoretic potentialism is one of the most lively trends in the philosophy of mathematics. Modal accounts of sets have been developed in two different ways. The first, initiated by Charles Parsons, focuses on sets as objects. The second, dating back to Hilary Putnam and Geoffrey Hellman, investigates set-theoretic structures. The paper identifies two strands of open issues, technical and conceptual, to clarify these two different, yet often conflated, views and categorize the potentialist approaches that have emerged in the contemporary debate. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Predicative Classes and Strict Potentialism.Øystein Linnebo & Stewart Shapiro - forthcoming - Philosophia Mathematica:nkae020.
    While sets are combinatorial collections, defined by their elements, classes are logical collections, defined by their membership conditions. We develop, in a potentialist setting, a predicative approach to (logical) classes of (combinatorial) sets. Some reasons emerge to adopt a stricter form of potentialism, which insists, not only that each object is generated at some stage of an incompletable process, but also that each truth is “made true” at some such stage. The natural logic of this strict form of potentialism is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Natural Deduction Calculus for S4.2.Simone Martini, Andrea Masini & Margherita Zorzi - 2024 - Notre Dame Journal of Formal Logic 65 (2):127-150.
    We propose a natural deduction calculus for the modal logic S4.2. The system is designed to match as much as possible the structure and the properties of the standard system of natural deduction for first-order classical logic, exploiting the formal analogy between modalities and quantifiers. The system is proved sound and complete with respect to (w.r.t.) the standard Hilbert-style formulation of S4.2. Normalization and its consequences are obtained in a natural way, with proofs that closely follow the analogous ones for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Arithmetic is Necessary.Zachary Goodsell - 2024 - Journal of Philosophical Logic 53 (4).
    (Goodsell, Journal of Philosophical Logic, 51(1), 127-150 2022) establishes the noncontingency of sentences of first-order arithmetic, in a plausible higher-order modal logic. Here, the same result is derived using significantly weaker assumptions. Most notably, the assumption of rigid comprehension—that every property is coextensive with a modally rigid one—is weakened to the assumption that the Boolean algebra of properties under necessitation is countably complete. The results are generalized to extensions of the language of arithmetic, and are applied to answer a question (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • 26 Potential Infinity, Paradox, and the Mind of God: Historical Survey.Samuel Levey, Øystein Linnebo & Stewart Shapiro - 2024 - In Mirosław Szatkowski (ed.), Ontology of Divinity. Boston: De Gruyter. pp. 531-560.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Forever Finite: The Case Against Infinity (Expanded Edition).Kip K. Sewell - 2023 - Alexandria, VA: Rond Books.
    EXPANDED EDITION (eBook): -/- Infinity Is Not What It Seems...Infinity is commonly assumed to be a logical concept, reliable for conducting mathematics, describing the Universe, and understanding the divine. Most of us are educated to take for granted that there exist infinite sets of numbers, that lines contain an infinite number of points, that space is infinite in expanse, that time has an infinite succession of events, that possibilities are infinite in quantity, and over half of the world’s population believes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Competing Roles of Aristotle's Account of the Infinite.Robby Finley - 2024 - Apeiron 57 (1):25-54.
    There are two distinct but interrelated questions concerning Aristotle’s account of infinity that have been the subject of recurring debate. The first of these, what I call here the interpretative question, asks for a charitable and internally coherent interpretation of the limited pieces of text where Aristotle outlines his view of the ‘potential’ (and not ‘actual’) infinite. The second, what I call here the philosophical question, asks whether there is a way to make Aristotle’s notion of the potential infinite coherent (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What Model Companionship Can Say About the Continuum Problem.Giorgio Venturi & Matteo Viale - 2024 - Review of Symbolic Logic 17 (2):546-585.
    We present recent results on the model companions of set theory, placing them in the context of a current debate in the philosophy of mathematics. We start by describing the dependence of the notion of model companionship on the signature, and then we analyze this dependence in the specific case of set theory. We argue that the most natural model companions of set theory describe (as the signature in which we axiomatize set theory varies) theories of $H_{\kappa ^+}$, as $\kappa (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Weyl and Two Kinds of Potential Domains.Laura Crosilla & Øystein Linnebo - forthcoming - Noûs.
    According to Weyl, “‘inexhaustibility’ is essential to the infinite”. However, he distinguishes two kinds of inexhaustible, or merely potential, domains: those that are “extensionally determinate” and those that are not. This article clarifies Weyl's distinction and explains its enduring logical and philosophical significance. The distinction sheds lights on the contemporary debate about potentialism, which in turn affords a deeper understanding of Weyl.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)The Modal Logic of Potential Infinity: Branching Versus Convergent Possibilities.Ethan Brauer - 2022 - Erkenntnis 87 (5):2161-2179.
    Modal logic provides an elegant way to understand the notion of potential infinity. This raises the question of what the right modal logic is for reasoning about potential infinity. In this article I identify a choice point in determining the right modal logic: Can a potentially infinite collection ever be expanded in two mutually incompatible ways? If not, then the possible expansions are convergent; if so, then the possible expansions are branching. When possible expansions are convergent, the right modal logic (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Strengthening the Russellian argument against absolutely unrestricted quantification.Laureano Luna - 2022 - Synthese 200 (3):1-13.
    The Russellian argument against the possibility of absolutely unrestricted quantification can be answered by the partisan of that quantification in an apparently easy way, namely, arguing that the objects used in the argument do not exist because they are defined in a viciously circular fashion. We show that taking this contention along as a premise and relying on an extremely intuitive Principle of Determinacy, it is possible to devise a reductio of the possibility of absolutely unrestricted quantification. Therefore, there are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Predicativism as a Form of Potentialism.Øystein Linnebo & Stewart Shapiro - 2023 - Review of Symbolic Logic 16 (1):1-32.
    In the literature, predicativism is connected not only with the Vicious Circle Principle but also with the idea that certain totalities are inherently potential. To explain the connection between these two aspects of predicativism, we explore some approaches to predicativity within the modal framework for potentiality developed in Linnebo (2013) and Linnebo and Shapiro (2019). This puts predicativism into a more general framework and helps to sharpen some of its key theses.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mirroring Theorems in Free Logic.Ethan Brauer - 2020 - Notre Dame Journal of Formal Logic 61 (4):561-572.
    Linnebo and Shapiro have recently given an analysis of potential infinity using modal logic. A key technical component of their account is to show that under a suitable translation ◊ of nonmodal language into modal language, nonmodal sentences ϕ 1, …, ϕ n entail ψ just in case ϕ 1 ◊, …, ϕ n ◊ entail ψ ◊ in the modal logic S4.2. Linnebo and Shapiro establish this result in nonfree logic. In this note I argue that their analysis of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)The Modal Logic of Potential Infinity: Branching Versus Convergent Possibilities.Ethan Brauer - 2020 - Erkenntnis:1-19.
    Modal logic provides an elegant way to understand the notion of potential infinity. This raises the question of what the right modal logic is for reasoning about potential infinity. In this article I identify a choice point in determining the right modal logic: Can a potentially infinite collection ever be expanded in two mutually incompatible ways? If not, then the possible expansions are convergent; if so, then the possible expansions are branching. When possible expansions are convergent, the right modal logic (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A Theory of Particular Sets.Paul Blain Levy - manuscript
    ZFC has sentences that quantify over all sets or all ordinals, without restriction. Some have argued that sentences of this kind lack a determinate meaning. We propose a set theory called TOPS, using Natural Deduction, that avoids this problem by speaking only about particular sets.
    Download  
     
    Export citation  
     
    Bookmark  
  • Groups, sets, and paradox.Eric Snyder & Stewart Shapiro - 2022 - Linguistics and Philosophy 45 (6):1277-1313.
    Perhaps the most pressing challenge for singularism—the predominant view that definite plurals like ‘the students’ singularly refer to a collective entity, such as a mereological sum or set—is that it threatens paradox. Indeed, this serves as a primary motivation for pluralism—the opposing view that definite plurals refer to multiple individuals simultaneously through the primitive relation of plural reference. Groups represent one domain in which this threat is immediate. After all, groups resemble sets in having a kind of membership-relation and iterating: (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Time Does Not Pass if Time Began from an Infinite Past.Kunihisa Morita - 2022 - Kriterion – Journal of Philosophy 36 (3-4):291-302.
    Philosophers have long discussed whether time really passes. Simultaneously, they have also discussed whether time could have begun from an infinite past. This paper clarifies the relationship between the reality of time’s passage and an infinite past. I assert that time cannot have an infinite past if time really passes. This argument is based on a proposition that an infinite series of events cannot be completed if time really passes. A seemingly strong objection to this proposition is that no movement (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The σ1-definable universal finite sequence.Joel David Hamkins & Kameryn J. Williams - 2022 - Journal of Symbolic Logic 87 (2):783-801.
    We introduce the $\Sigma _1$ -definable universal finite sequence and prove that it exhibits the universal extension property amongst the countable models of set theory under end-extension. That is, the sequence is $\Sigma _1$ -definable and provably finite; the sequence is empty in transitive models; and if M is a countable model of set theory in which the sequence is s and t is any finite extension of s in this model, then there is an end-extension of M to a (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Peacocke on magnitudes and numbers.Øystein Linnebo - 2020 - Philosophical Studies 178 (8):2717-2729.
    Peacocke’s recent The Primacy of Metaphysics covers a wide range of topics. This critical discussion focuses on the book’s novel account of extensive magnitudes and numbers. First, I further develop and defend Peacocke’s argument against nominalistic approaches to magnitudes and numbers. Then, I argue that his view is more Aristotelian than Platonist because reified magnitudes and numbers are accounted for via corresponding properties and these properties’ application conditions, and because the mentioned objects have a “shallow nature” relative to the corresponding (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Kant on the Existence and Uniqueness of the Best Possible World.Gonzalo Rodriguez-Pereyra - 2018 - History of Philosophy & Logical Analysis 21 (1):195-215.
    In the 1750s Optimism, the Leibnizian doctrine that the actual world is the best possible world, popularized by Pope in 1733 in his Essay on Man, was a hot topic. In 1759 Kant wrote and published a brief essay defending Optimism, Attempt at some Reflections on Optimism. Kant’s aim in this essay is to establish that there is one and only one best possible world. In particular, he argues against the claim that, for every possible world, there is a possible (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation