Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Is There an Ontology of Infinity?Stathis Livadas - 2020 - Foundations of Science 25 (3):519-540.
    In this article I try to articulate a defensible argumentation against the idea of an ontology of infinity. My position is phenomenologically motivated and in this virtue strongly influenced by the Husserlian reduction of the ontological being to a process of subjective constitution within the immanence of consciousness. However taking into account the historical charge and the depth of the question of infinity over the centuries I also include a brief review of the platonic and aristotelian views and also those (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Extending the Non-extendible: Shades of Infinity in Large Cardinals and Forcing Theories.Stathis Livadas - 2018 - Axiomathes 28 (5):565-586.
    This is an article whose intended scope is to deal with the question of infinity in formal mathematics, mainly in the context of the theory of large cardinals as it has developed over time since Cantor’s introduction of the theory of transfinite numbers in the late nineteenth century. A special focus has been given to this theory’s interrelation with the forcing theory, introduced by P. Cohen in his lectures of 1963 and further extended and deepened since then, which leads to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Talking About Models: The Inherent Constraints of Mathematics.Stathis Livadas - 2020 - Axiomathes 30 (1):13-36.
    In this article my primary intention is to engage in a discussion on the inherent constraints of models, taken as models of theories, that reaches beyond the epistemological level. Naturally the paper takes into account the ongoing debate between proponents of the syntactic and the semantic view of theories and that between proponents of the various versions of scientific realism, reaching down to the most fundamental, subjective level of discourse. In this approach, while allowing for a limited discussion of physical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Enigma of ‘Being There’: Choosing Between Ontology and Epistemology.Stathis Livadas - 2022 - Axiomathes 32 (6):1129-1149.
    The aim of this paper is to show, based on Heidegger’s ontology of being and Husserl’s ontological aspects of phenomenology, the ways in which may be highlighted the ontological turned epistemological (and vice versa) enigma of the actual presence of being-in-the-world. In such perspective the content of the philosophical term ‘being there’, in the sense of an original presence in the actuality of the world, is the key issue of discussion both in terms of the ontological implication of the accompanying (...)
    Download  
     
    Export citation  
     
    Bookmark