Switch to: References

Add citations

You must login to add citations.
  1. Constructive geometrical reasoning and diagrams.John Mumma - 2012 - Synthese 186 (1):103-119.
    Modern formal accounts of the constructive nature of elementary geometry do not aim to capture the intuitive or concrete character of geometrical construction. In line with the general abstract approach of modern axiomatics, nothing is presumed of the objects that a geometric construction produces. This study explores the possibility of a formal account of geometric construction where the basic geometric objects are understood from the outset to possess certain spatial properties. The discussion is centered around Eu , a recently developed (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Constructivity in Geometry.Richard Vesley - 1999 - History and Philosophy of Logic 20 (3-4):291-294.
    We review and contrast three ways to make up a formal Euclidean geometry which one might call constructive, in a computational sense. The starting point is the first-order geometry created by Tarski.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Axiomatizations of hyperbolic geometry: A comparison based on language and quantifier type complexity.Victor Pambuccian - 2002 - Synthese 133 (3):331 - 341.
    Hyperbolic geometry can be axiomatized using the notions of order andcongruence (as in Euclidean geometry) or using the notion of incidencealone (as in projective geometry). Although the incidence-based axiomatizationmay be considered simpler because it uses the single binary point-linerelation of incidence as a primitive notion, we show that it issyntactically more complex. The incidence-based formulation requires some axioms of the quantifier-type forallexistsforall, while the axiom system based on congruence and order can beformulated using only forallexists-axioms.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Constructive geometry and the parallel postulate.Michael Beeson - 2016 - Bulletin of Symbolic Logic 22 (1):1-104.
    Euclidean geometry, as presented by Euclid, consists of straightedge-and-compass constructions and rigorous reasoning about the results of those constructions. We show that Euclidean geometry can be developed using only intuitionistic logic. This involves finding “uniform” constructions where normally a case distinction is used. For example, in finding a perpendicular to line L through point p, one usually uses two different constructions, “erecting” a perpendicular when p is on L, and “dropping” a perpendicular when p is not on L, but in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Axiomatizing geometric constructions.Victor Pambuccian - 2008 - Journal of Applied Logic 6 (1):24-46.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Negation-Free and Contradiction-Free Proof of the Steiner–Lehmus Theorem.Victor Pambuccian - 2018 - Notre Dame Journal of Formal Logic 59 (1):75-90.
    By rephrasing quantifier-free axioms as rules of derivation in sequent calculus, we show that the generalized Steiner–Lehmus theorem admits a direct proof in classical logic. This provides a partial answer to a question raised by Sylvester in 1852. We also present some comments on possible intuitionistic approaches.
    Download  
     
    Export citation  
     
    Bookmark