Switch to: References

Add citations

You must login to add citations.
  1. Intuitionistic Overlap Structures.Francesco Ciraulo - 2013 - Logic and Logical Philosophy 22 (2):201-212.
    We study some connections between two kinds of emph{overlap} relations: that of point-free geometries in the sense of Grzegorczyk, Whitehead and Clarke, and that recently introduced by Sambin within his constructive approach to topology. The main thesis of this paper is that the overlap relation in the latter sense is a necessary tool for a constructive and intuitionistic development of point-free geometry.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mereotopological Connection.Anthony G. Cohn & Achille C. Varzi - 2003 - Journal of Philosophical Logic 32 (4):357-390.
    The paper outlines a model-theoretic framework for investigating and comparing a variety of mereotopological theories. In the first part we consider different ways of characterizing a mereotopology with respect to (i) the intended interpretation of the connection primitive, and (ii) the composition of the admissible domains of quantification (e.g., whether or not they include boundary elements). The second part extends this study by considering two further dimensions along which different patterns of topological connection can be classified - the strength of (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Full development of Tarski's geometry of solids.Rafaŀ Gruszczyński & Andrzej Pietruszczak - 2008 - Bulletin of Symbolic Logic 14 (4):481-540.
    In this paper we give probably an exhaustive analysis of the geometry of solids which was sketched by Tarski in his short paper [20, 21]. We show that in order to prove theorems stated in [20, 21] one must enrich Tarski's theory with a new postulate asserting that the universe of discourse of the geometry of solids coincides with arbitrary mereological sums of balls, i.e., with solids. We show that once having adopted such a solution Tarski's Postulate 4 can be (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Continuous Lattices and Whiteheadian Theory of Space.Thomas Mormann - 1998 - Logic and Logical Philosophy 6:35 - 54.
    In this paper a solution of Whitehead’s problem is presented: Starting with a purely mereological system of regions a topological space is constructed such that the class of regions is isomorphic to the Boolean lattice of regular open sets of that space. This construction may be considered as a generalized completion in analogy to the well-known Dedekind completion of the rational numbers yielding the real numbers . The argument of the paper relies on the theories of continuous lattices and “pointless” (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Boundary.Achille C. Varzi - 2013 - Stanford Encyclopedia of Philosophy.
    We think of a boundary whenever we think of an entity demarcated from its surroundings. There is a boundary (a line) separating Maryland and Pennsylvania. There is a boundary (a circle) isolating the interior of a disc from its exterior. There is a boundary (a surface) enclosing the bulk of this apple. Sometimes the exact location of a boundary is unclear or otherwise controversial (as when you try to trace out the margins of Mount Everest, or even the boundary of (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Mathematical Methods in Region-Based Theories of Space: The Case of Whitehead Points.Rafał Gruszczyński - 2024 - Bulletin of the Section of Logic 53 (1):63-104.
    Regions-based theories of space aim—among others—to define points in a geometrically appealing way. The most famous definition of this kind is probably due to Whitehead. However, to conclude that the objects defined are points indeed, one should show that they are points of a geometrical or a topological space constructed in a specific way. This paper intends to show how the development of mathematical tools allows showing that Whitehead’s method of extensive abstraction provides a construction of objects that are fundamental (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A comparison of two systems of point-free topology.Rafał Gruszczyński & Andrzej Pietruszczak - 2018 - Bulletin of the Section of Logic 47 (3):187.
    This is a spin-off paper to [3, 4] in which we carried out an extensive analysis of Andrzej Grzegorczyk’s point-free topology from [5]. In [1] Loredana Biacino and Giangiacomo Gerla presented an axiomatization which was inspired by the Grzegorczyk’s system, and which is its variation. Our aim is to compare the two approaches and show that they are slightly different. Except for pointing to dissimilarities, we also demonstrate that the theories coincide in presence of axiom stipulating non-existence of atoms.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Paradoxes.Piotr Łukowski - 2011 - Dordrecht and New York: Springer.
    This book, provides a critical approach to all major logical paradoxes: from ancient to contemporary ones. There are four key aims of the book: 1. Providing systematic and historical survey of different approaches – solutions of the most prominent paradoxes discussed in the logical and philosophical literature. 2. Introducing original solutions of major paradoxes like: Liar paradox, Protagoras paradox, an unexpected examination paradox, stone paradox, crocodile, Newcomb paradox. 3. Explaining the far-reaching significance of paradoxes of vagueness and change for philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Boolean connection algebras: A new approach to the Region-Connection Calculus.J. G. Stell - 2000 - Artificial Intelligence 122 (1-2):111-136.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • A Study in Grzegorczyk Point-Free Topology Part I: Separation and Grzegorczyk Structures.Rafał Gruszczyński & Andrzej Pietruszczak - 2018 - Studia Logica 106 (6):1197-1238.
    This is the first, out of two papers, devoted to Andrzej Grzegorczyk’s point-free system of topology from Grzegorczyk :228–235, 1960. https://doi.org/10.1007/BF00485101). His system was one of the very first fully fledged axiomatizations of topology based on the notions of region, parthood and separation. Its peculiar and interesting feature is the definition of point, whose intention is to grasp our geometrical intuitions of points as systems of shrinking regions of space. In this part we analyze separation structures and Grzegorczyk structures, and (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A complete axiom system for polygonal mereotopology of the real plane.Ian Pratt & Dominik Schoop - 1998 - Journal of Philosophical Logic 27 (6):621-658.
    This paper presents a calculus for mereotopological reasoning in which two-dimensional spatial regions are treated as primitive entities. A first order predicate language ℒ with a distinguished unary predicate c(x), function-symbols +, · and - and constants 0 and 1 is defined. An interpretation ℜ for ℒ is provided in which polygonal open subsets of the real plane serve as elements of the domain. Under this interpretation the predicate c(x) is read as 'region x is connected' and the function-symbols and (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • A Proximity Approach to Some Region-Based Theories of Space.Dimiter Vakarelov, Georgi Dimov, Ivo Düntsch & Brandon Bennett - 2002 - Journal of Applied Non-Classical Logics 12 (3-4):527-559.
    This paper is a continuation of [VAK 01]. The notion of local connection algebra, based on the primitive notions of connection and boundedness, is introduced. It is slightly different but equivalent to Roeper's notion of region-based topology [ROE 97]. The similarity between the local proximity spaces of Leader [LEA 67] and local connection algebras is emphasized. Machinery, analogous to that introduced by Efremovi?c [EFR 51],[EFR 52], Smirnov [SMI 52] and Leader [LEA 67] for proximity and local proximity spaces, is developed. (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Full mereogeometries.Stefano Borgo & Claudio Masolo - 2010 - Review of Symbolic Logic 3 (4):521-567.
    We analyze and compare geometrical theories based on mereology (mereogeometries). Most theories in this area lack in formalization, and this prevents any systematic logical analysis. To overcome this problem, we concentrate on specific interpretations for the primitives and use them to isolate comparable models for each theory. Relying on the chosen interpretations, we introduce the notion of environment structure, that is, a minimal structure that contains a (sub)structure for each theory. In particular, in the case of mereogeometries, the domain of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Regions-based two dimensional continua: The Euclidean case.Geoffrey Hellman & Stewart Shapiro - 2015 - Logic and Logical Philosophy 24 (4).
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Grzegorczyk Points and Filters in Boolean Contact Algebras.Rafał Gruszczyński & Andrzej Pietruszczak - 2023 - Review of Symbolic Logic 16 (2):509-528.
    The purpose of this paper is to compare the notion of a Grzegorczyk point introduced in [19] (and thoroughly investigated in [3, 14, 16, 18]) to the standard notions of a filter in Boolean algebras and round filter in Boolean contact algebras. In particular, we compare Grzegorczyk points to filters and ultrafilters of atomic and atomless algebras. We also prove how a certain extra axiom influences topological spaces for Grzegorczyk contact algebras. Last but not least, we do not refrain from (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Grzegorczyk and Whitehead Points: The Story Continues.Rafał Gruszczyński & Santiago Jockwich Martinez - 2024 - Journal of Philosophical Logic 53 (3):695-719.
    The paper is devoted to the analysis of two seminal definitions of points within the region-based framework: one by Whitehead (1929) and the other by Grzegorczyk (Synthese, 12(2-3), 228-235 1960). Relying on the work of Biacino & Gerla (Notre Dame Journal of Formal Logic, 37(3), 431-439 1996), we improve their results, solve some open problems concerning the mutual relationship between Whitehead and Grzegorczyk points, and put forward open problems for future investigation.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Study in Grzegorczyk Point-Free Topology Part II: Spaces of Points.Rafał Gruszczyński & Andrzej Pietruszczak - 2019 - Studia Logica 107 (4):809-843.
    In the second installment to Gruszczyński and Pietruszczak we carry out an analysis of spaces of points of Grzegorczyk structures. At the outset we introduce notions of a concentric and \-concentric topological space and we recollect some facts proven in the first part which are important for the sequel. Theorem 2.9 is a strengthening of Theorem 5.13, as we obtain stronger conclusion weakening Tychonoff separation axiom to mere regularity. This leads to a stronger version of Theorem 6.10. Further, we show (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Logics of Space with Connectedness Predicates: Complete Axiomatizations.Tinko Tinchev & Dimiter Vakarelov - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 434-453.
    Download  
     
    Export citation  
     
    Bookmark   1 citation