Switch to: References

Add citations

You must login to add citations.
  1. Mereotopology without Mereology.Peter Forrest - 2010 - Journal of Philosophical Logic 39 (3):229-254.
    Mereotopology is that branch of the theory of regions concerned with topological properties such as connectedness. It is usually developed by considering the parthood relation that characterizes the, perhaps non-classical, mereology of Space (or Spacetime, or a substance filling Space or Spacetime) and then considering an extra primitive relation. My preferred choice of mereotopological primitive is interior parthood . This choice will have the advantage that filters may be defined with respect to it, constructing “points”, as Peter Roeper has done (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Relational proof systems for spatial reasoning.Joanna Golińska-Pilarek & Ewa Orlowska - 2006 - Journal of Applied Non-Classical Logics 16 (3-4):409-431.
    We present relational proof systems for the four groups of theories of spatial reasoning: contact relation algebras, Boolean algebras with a contact relation, lattice-based spatial theories, spatial theories based on a proximity relation.
    Download  
     
    Export citation  
     
    Bookmark  
  • Stonian p-ortholattices: A new approach to the mereotopology RT 0.Torsten Hahmann, Michael Winter & Michael Gruninger - 2009 - Artificial Intelligence 173 (15):1424-1440.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • New Work for Carnap’s Quasi-Analysis.Thomas Mormann - 2009 - Journal of Philosophical Logic 38 (3):249-282.
    Carnap’s quasi-analysis is usually considered as an ingenious but definitively flawed approach in epistemology and philosophy of science. In this paper it is argued that this assessment is mistaken. Quasi-analysis can be reconstructed as a representational theory of constitution of structures that has applications in many realms of epistemology and philosophy of science. First, existence and uniqueness theorems for quasi-analytical representations are proved. These theorems defuse the classical objections against the quasi-analytical approach launched forward by Goodman and others. Secondly, the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A variety of algebras closely related to subordination algebras.Sergio Celani & Ramon Jansana - 2022 - Journal of Applied Non-Classical Logics 32 (2):200-238.
    We introduce a variety of algebras in the language of Boolean algebras with an extra implication, namely the variety of pseudo-subordination algebras, which is closely related to subordination algebras. We believe it provides a minimal general algebraic framework where to place and systematise the research on classes of algebras related to several kinds of subordination algebras. We also consider the subvariety of pseudo-contact algebras, related to contact algebras, and the subvariety of the strict implication algebras introduced in Bezhanishvili et al. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Extended Contact Algebras and Internal Connectedness.Tatyana Ivanova - 2020 - Studia Logica 108 (2):239-254.
    The notion of contact algebra is one of the main tools in the region-based theory of space. It is an extension of Boolean algebra with an additional relation C, called contact. Standard models of contact algebras are topological and are the contact algebras of regular closed sets in a given topological space. In such a contact algebra we add the predicate of internal connectedness with the following meaning—a regular closed set is internally connected if and only if its interior is (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Logics for extended distributive contact lattices.T. Ivanova - 2018 - Journal of Applied Non-Classical Logics 28 (1):140-162.
    The notion of contact algebra is one of the main tools in the region-based theory of space. It is an extension of Boolean algebra with an additional relation C called contact. There are some problems related to the motivation of the operation of Boolean complementation. Because of this operation is dropped and the language of distributive lattices is extended by considering as non-definable primitives the relations of contact, nontangential inclusion and dual contact. It is obtained an axiomatization of the theory (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Dynamic logics of the region-based theory of discrete spaces.Philippe Balbiani, Tinko Tinchev & Dimiter Vakarelov - 2007 - Journal of Applied Non-Classical Logics 17 (1):39-61.
    The aim of this paper is to give new kinds of modal logics suitable for reasoning about regions in discrete spaces. We call them dynamic logics of the region-based theory of discrete spaces. These modal logics are linguistic restrictions of propositional dynamic logic with the global diamond E. Their formulas are equivalent to Boolean combinations of modal formulas like E(A ∧ ⟨α⟩ B) where A and B are Boolean terms and α is a relational term. Examining what we can say (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • From Contact Relations to Modal Operators, and Back.Rafał Gruszczyński & Paula Menchón - 2023 - Studia Logica 111 (5):717-748.
    One of the standard axioms for Boolean contact algebras says that if a region __x__ is in contact with the join of __y__ and __z__, then __x__ is in contact with at least one of the two regions. Our intention is to examine a stronger version of this axiom according to which if __x__ is in contact with the supremum of some family __S__ of regions, then there is a __y__ in __S__ that is in contact with __x__. We study (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Calculus of Regions Respecting Both Measure and Topology.Tamar Lando & Dana Scott - 2019 - Journal of Philosophical Logic 48 (5):825-850.
    Say that space is ‘gunky’ if every part of space has a proper part. Traditional theories of gunk, dating back to the work of Whitehead in the early part of last century, modeled space in the Boolean algebra of regular closed subsets of Euclidean space. More recently a complaint was brought against that tradition in Arntzenius and Russell : Lebesgue measure is not even finitely additive over the algebra, and there is no countably additive measure on the algebra. Arntzenius advocated (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Contact Join-semilattices.Tatyana Ivanova - 2022 - Studia Logica 110 (5):1219-1241.
    Contact algebra is one of the main tools in region-based theory of space. In it is generalized by dropping the operation Boolean complement. Furthermore we can generalize contact algebra by dropping also the operation meet. Thus we obtain structures, called contact join-semilattices and structures, called distributive contact join-semilattices. We obtain a set-theoretical representation theorem for CJS and a relational representation theorem for DCJS. As corollaries we get also topological representation theorems. We prove that the universal theory of CJS and of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A discrete duality between apartness algebras and apartness frames.Ivo Düntsch & Ewa Orlowska - 2008 - Journal of Applied Non-Classical Logics 18 (2-3):213-227.
    Apartness spaces were introduced as a constructive counterpart to proximity spaces which, in turn, aimed to model the concept of nearness of sets in a metric or topological environment. In this paper we introduce apartness algebras and apartness frames intended to be abstract counterparts to the apartness spaces of (Bridges et al., 2003), and we prove a discrete duality for them.
    Download  
     
    Export citation  
     
    Bookmark   1 citation