Switch to: References

Add citations

You must login to add citations.
  1. Taming the Indefinitely Extensible Definable Universe.L. Luna & W. Taylor - 2014 - Philosophia Mathematica 22 (2):198-208.
    In previous work in 2010 we have dealt with the problems arising from Cantor's theorem and the Richard paradox in a definable universe. We proposed indefinite extensibility as a solution. Now we address another definability paradox, the Berry paradox, and explore how Hartogs's cardinality theorem would behave in an indefinitely extensible definable universe where all sets are countable.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rescuing Poincaré From Richard’s Paradox.Laureano Luna - 2017 - History and Philosophy of Logic 38 (1):57-71.
    Poincaré in a 1909 lecture in Göttingen proposed a solution to the apparent incompatibility of two results as viewed from a definitionist perspective: on the one hand, Richard’s proof that the definitions of real numbers form a countable set and, on the other, Cantor’s proof that the real numbers make up an uncountable class. Poincaré argues that, Richard’s result notwithstanding, there is no enumeration of all definable real numbers. We apply previous research by Luna and Taylor on Richard’s paradox, indefinite (...)
    Download  
     
    Export citation  
     
    Bookmark