Switch to: References

Add citations

You must login to add citations.
  1. Real closed rings II. model theory.Gregory Cherlin & Max A. Dickmann - 1983 - Annals of Pure and Applied Logic 25 (3):213-231.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Cell decompositions of C-minimal structures.Deirdre Haskell & Dugald Macpherson - 1994 - Annals of Pure and Applied Logic 66 (2):113-162.
    C-minimality is a variant of o-minimality in which structures carry, instead of a linear ordering, a ternary relation interpretable in a natural way on set of maximal chains of a tree. This notion is discussed, a cell-decomposition theorem for C-minimal structures is proved, and a notion of dimension is introduced. It is shown that C-minimal fields are precisely valued algebraically closed fields. It is also shown that, if certain specific ‘bad’ functions are not definable, then algebraic closure has the exchange (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Topological differential fields.Nicolas Guzy & Françoise Point - 2010 - Annals of Pure and Applied Logic 161 (4):570-598.
    We consider first-order theories of topological fields admitting a model-completion and their expansion to differential fields . We give a criterion under which the expansion still admits a model-completion which we axiomatize. It generalizes previous results due to M. Singer for ordered differential fields and of C. Michaux for valued differential fields. As a corollary, we show a transfer result for the NIP property. We also give a geometrical axiomatization of that model-completion. Then, for certain differential valued fields, we extend (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Substructures and uniform elimination for p-adic fields.Luc Bélair - 1988 - Annals of Pure and Applied Logic 39 (1):1-17.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On VC-minimal fields and dp-smallness.Vincent Guingona - 2014 - Archive for Mathematical Logic 53 (5-6):503-517.
    In this paper, we show that VC-minimal ordered fields are real closed. We introduce a notion, strictly between convexly orderable and dp-minimal, that we call dp-small, and show that this is enough to characterize many algebraic theories. For example, dp-small ordered groups are abelian divisible and dp-small ordered fields are real closed.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A generalization of von Neumann regularity.Claude Sureson - 2005 - Annals of Pure and Applied Logic 135 (1-3):210-242.
    We propose two theories, one generalizing the notion of regularity, the other symmetric to it. Under two additional axioms one obtains model completeness of both theories. Models of these theories can be viewed as rings of sections of sheaves whose stalks are valuation rings. Regular rings correspond to the special case where all stalks are trivial valuation rings, that is fields.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Saturation and stability in the theory of computation over the reals.Olivier Chapuis & Pascal Koiran - 1999 - Annals of Pure and Applied Logic 99 (1-3):1-49.
    This paper was motivated by the following two questions which arise in the theory of complexity for computation over ordered rings in the now famous computational model introduced by Blum, Shub and Smale: 1. is the answer to the question P = ?NP the same in every real-closed field?2. if P ≠ NP for , does there exist a problem of which is NP but neither P nor NP-complete ?Some unclassical complexity classes arise naturally in the study of these questions. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A valuation ring analogue of von Neumann regularity.Claude Sureson - 2007 - Annals of Pure and Applied Logic 145 (2):204-222.
    We continue the study of a theory which is a valued analogue of the theory of regular rings studied by Carson, Lipshitz and Saracino, characterize it as the model companion of the theory of Prüfer rings, and prove its decidability. We then link it to the theory of p.p. rings developed by Weispfenning and show that it admits quantifier elimination in a related language.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Model companion and model completion of theories of rings.Claude Sureson - 2009 - Archive for Mathematical Logic 48 (5):403-420.
    Extending the language of rings to include predicates for Jacobson radical relations, we show that the theory of regular rings defined by Carson, Lipshitz and Saracino is the model completion of the theory of semisimple rings. Removing the requirement on the Jacobson radical (reduced to {0}), we prove that the theory of rings with no nilpotents does not admit a model companion relative to this augmented language.
    Download  
     
    Export citation  
     
    Bookmark