Switch to: References

Add citations

You must login to add citations.
  1. Understanding in mathematics: The case of mathematical proofs.Yacin Hamami & Rebecca Lea Morris - 2024 - Noûs 58 (4):1073-1106.
    Although understanding is the object of a growing literature in epistemology and the philosophy of science, only few studies have concerned understanding in mathematics. This essay offers an account of a fundamental form of mathematical understanding: proof understanding. The account builds on a simple idea, namely that understanding a proof amounts to rationally reconstructing its underlying plan. This characterization is fleshed out by specifying the relevant notion of plan and the associated process of rational reconstruction, building in part on Bratman's (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Theorem proving in artificial neural networks: new frontiers in mathematical AI.Markus Pantsar - 2024 - European Journal for Philosophy of Science 14 (1):1-22.
    Computer assisted theorem proving is an increasingly important part of mathematical methodology, as well as a long-standing topic in artificial intelligence (AI) research. However, the current generation of theorem proving software have limited functioning in terms of providing new proofs. Importantly, they are not able to discriminate interesting theorems and proofs from trivial ones. In order for computers to develop further in theorem proving, there would need to be a radical change in how the software functions. Recently, machine learning results (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophy of mathematical practice: A primer for mathematics educators.Yacin Hamami & Rebecca Morris - 2020 - ZDM Mathematics Education 52:1113–1126.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Unificatory Understanding and Explanatory Proofs.Joachim Frans - 2020 - Foundations of Science 26 (4):1105-1127.
    One of the central aims of the philosophical analysis of mathematical explanation is to determine how one can distinguish explanatory proofs from non-explanatory proofs. In this paper, I take a closer look at the current status of the debate, and what the challenges for the philosophical analysis of explanatory proofs are. In order to provide an answer to these challenges, I suggest we start from analysing the concept understanding. More precisely, I will defend four claims: understanding is a condition for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • ‘Chasing’ the diagram—the use of visualizations in algebraic reasoning.Silvia de Toffoli - 2017 - Review of Symbolic Logic 10 (1):158-186.
    The aim of this article is to investigate the roles of commutative diagrams (CDs) in a specific mathematical domain, and to unveil the reasons underlying their effectiveness as a mathematical notation; this will be done through a case study. It will be shown that CDs do not depict spatial relations, but represent mathematical structures. CDs will be interpreted as a hybrid notation that goes beyond the traditional bipartition of mathematical representations into diagrammatic and linguistic. It will be argued that one (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Between Pathology and Well-Behaviour – a Possible Foundation for Tame Mathematics.Angelo-Vlad Moldovan - 2022 - Studia Universitatis Babeş-Bolyai Philosophia 67 (Special Issue):63-75.
    An in-depth examination of the foundations of mathematics reveals how its treatment is centered around the topic of unique foundation vs. no need for a foundation in a traditional setting. In this paper, I show that by applying Shelah’s stability procedures to mathematics, we confine ourselves to a certain section that manages to escape the Gödel phenomenon and can be classified. We concentrate our attention on this mainly because of its tame nature. This result makes way for a new approach (...)
    Download  
     
    Export citation  
     
    Bookmark