Switch to: References

Citations of:

Does V. equal l?

Journal of Symbolic Logic 58 (1):15-41 (1993)

Add citations

You must login to add citations.
  1. Matematický realismus a naturalismus Penelope Maddy1.Vít Punčochář - 2012 - Organon F: Medzinárodný Časopis Pre Analytickú Filozofiu 19:199-226.
    Download  
     
    Export citation  
     
    Bookmark  
  • Objectivity over objects: A case study in theory formation.Kai Hauser - 2001 - Synthese 128 (3):245 - 285.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • V = L and intuitive plausibility in set theory. A case study.Tatiana Arrigoni - 2011 - Bulletin of Symbolic Logic 17 (3):337-360.
    What counts as an intuitively plausible set theoretic content (notion, axiom or theorem) has been a matter of much debate in contemporary philosophy of mathematics. In this paper I develop a critical appraisal of the issue. I analyze first R. B. Jensen's positions on the epistemic status of the axiom of constructibility. I then formulate and discuss a view of intuitiveness in set theory that assumes it to hinge basically on mathematical success. At the same time, I present accounts of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Do not claim too much: Second-order logic and first-order logic.Stewart Shapiro - 1999 - Philosophia Mathematica 7 (1):42-64.
    The purpose of this article is to delimit what can and cannot be claimed on behalf of second-order logic. The starting point is some of the discussions surrounding my Foundations without Foundationalism: A Case for Secondorder Logic.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Notion of Explanation in Gödel’s Philosophy of Mathematics.Krzysztof Wójtowicz - 2019 - Studia Semiotyczne—English Supplement 30:85-106.
    The article deals with the question of in which sense the notion of explanation can be applied to Kurt Gödel’s philosophy of mathematics. Gödel, as a mathematical realist, claims that in mathematics we are dealing with facts that have an objective character. One of these facts is the solvability of all well-formulated mathematical problems—and this fact requires a clarification. The assumptions on which Gödel’s position is based are: metaphysical realism: there is a mathematical universe, it is objective and independent of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Maddy and Mathematics: Naturalism or Not.Jeffrey W. Roland - 2007 - British Journal for the Philosophy of Science 58 (3):423-450.
    Penelope Maddy advances a purportedly naturalistic account of mathematical methodology which might be taken to answer the question 'What justifies axioms of set theory?' I argue that her account fails both to adequately answer this question and to be naturalistic. Further, the way in which it fails to answer the question deprives it of an analog to one of the chief attractions of naturalism. Naturalism is attractive to naturalists and nonnaturalists alike because it explains the reliability of scientific practice. Maddy's (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Kategoria wyjaśniania a filozofia matematyki Gödla.Krzysztof Wójtowicz - 2018 - Studia Semiotyczne 32 (2):107-129.
    Artykuł dotyczy zagadnienia, w jakim sensie można stosować kategorię wyjaśnienia do interpretacji filozofii matematyki Kurta Gödla. Gödel – jako realista matematyczny – twierdzi bowiem, że w wypadku matematyki mamy do czynienia z niezależnymi od nas faktami. Jednym z owych faktów jest właśnie rozwiązywalność wszystkich dobrze postawionych problemów matematycznych – i ten fakt domaga się wyjaśnienia. Kluczem do zrozumienia stanowiska Gödla jest identyfikacja założeń, na których się opiera: metafizyczny realizm: istnieje uniwersum matematyczne, ma ono charakter obiektywny, niezależny od nas; optymizm epistemologiczny: (...)
    Download  
     
    Export citation  
     
    Bookmark