Switch to: References

Add citations

You must login to add citations.
  1. Omnipresence, Multipresence and Ubiquity: Kinds of Generality in and Around Mathematics and Logics. [REVIEW]I. Grattan-Guinness - 2011 - Logica Universalis 5 (1):21-73.
    A prized property of theories of all kinds is that of generality, of applicability or least relevance to a wide range of circumstances and situations. The purpose of this article is to present a pair of distinctions that suggest that three kinds of generality are to be found in mathematics and logics, not only at some particular period but especially in developments that take place over time: ‘omnipresent’ and ‘multipresent’ theories, and ‘ubiquitous’ notions that form dependent parts, or moments, of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • The Significance of Quasizerlegung for Carnap's Aufbau and Scientific Philosophy in General.Caterina del Sordo & Thomas Mormann - 2022 - PHILINQ 10 (1):234 - 253.
    Download  
     
    Export citation  
     
    Bookmark  
  • A representation theorem for measurable relation algebras.Steven Givant & Hajnal Andréka - 2018 - Annals of Pure and Applied Logic 169 (11):1117-1189.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relation algebras from cylindric algebras, I.Robin Hirsch & Ian Hodkinson - 2001 - Annals of Pure and Applied Logic 112 (2-3):225-266.
    We characterise the class S Ra CA n of subalgebras of relation algebra reducts of n -dimensional cylindric algebras by the notion of a ‘hyperbasis’, analogous to the cylindric basis of Maddux, and by representations. We outline a game–theoretic approximation to the existence of a representation, and how to use it to obtain a recursive axiomatisation of S Ra CA n.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Dynamic logic with program specifications and its relational proof system.Ewa Orlowska - 1993 - Journal of Applied Non-Classical Logics 3 (2):147-171.
    ABSTRACT Propositional dynamic logic with converse and test, is enriched with complement, intersection and relational operations of weakest prespecification and weakest postspecification. Relational deduction system for the logic is given based on its interpretation in the relational calculus. Relational interpretation of the operators ?repeat? and ?loop? is given.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Relational proof systems for spatial reasoning.Joanna Golińska-Pilarek & Ewa Orlowska - 2006 - Journal of Applied Non-Classical Logics 16 (3-4):409-431.
    We present relational proof systems for the four groups of theories of spatial reasoning: contact relation algebras, Boolean algebras with a contact relation, lattice-based spatial theories, spatial theories based on a proximity relation.
    Download  
     
    Export citation  
     
    Bookmark  
  • The complexity of constraint satisfaction problems for small relation algebras.M. Cristani & R. Hirsch - 2004 - Artificial Intelligence 156 (2):177-196.
    Download  
     
    Export citation  
     
    Bookmark  
  • Tractable approximations for temporal constraint handling.Robin Hirsch - 2000 - Artificial Intelligence 116 (1-2):287-295.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Dov M. Gabbay and John Woods, eds., Handbook of the History of Logic, volume 3: The Rise of Modern Logic from Leibniz to Frege. [REVIEW]Irving H. Anellis - 2009 - Transactions of the Charles S. Peirce Society 45 (3):456-463.
    Download  
     
    Export citation  
     
    Bookmark  
  • Complexity of equations valid in algebras of relations part I: Strong non-finitizability.Hajnal Andréka - 1997 - Annals of Pure and Applied Logic 89 (2):149-209.
    We study algebras whose elements are relations, and the operations are natural “manipulations” of relations. This area goes back to 140 years ago to works of De Morgan, Peirce, Schröder . Well known examples of algebras of relations are the varieties RCAn of cylindric algebras of n-ary relations, RPEAn of polyadic equality algebras of n-ary relations, and RRA of binary relations with composition. We prove that any axiomatization, say E, of RCAn has to be very complex in the following sense: (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The Philosophy of Nature of the Natural Realism. The Operator Algebra from Physics to Logic.Gianfranco Basti - 2022 - Philosophies 7 (6):121.
    This contribution is an essay of formal philosophy—and more specifically of formal ontology and formal epistemology—applied, respectively, to the philosophy of nature and to the philosophy of sciences, interpreted the former as the ontology and the latter as the epistemology of the modern mathematical, natural, and artificial sciences, the theoretical computer science included. I present the formal philosophy in the framework of the category theory (CT) as an axiomatic metalanguage—in many senses “wider” than set theory (ST)—of mathematics and logic, both (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Structural Features in Ernst Schröder's Work. Part II.Davide Bondoni - 2012 - Logic and Logical Philosophy 21 (3):271-315.
    In this paper (the second of two parts) we propose a structural interpretation of Schröder’s work, pointing out his insistence on the priority of a whole in comparison with its parts. The examples are taken from the diverse areas in which Schröder was active, with a particular interest in his project of an absolute algebra.
    Download  
     
    Export citation  
     
    Bookmark  
  • Multi-dimensional modal logic.Maarten Marx - 1996 - Boston, Mass.: Kluwer Academic Publishers. Edited by Yde Venema.
    Over the last twenty years, in all of these neighbouring fields, modal systems have been developed that we call multi-dimensional. (Our definition of multi ...
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Step by step – Building representations in algebraic logic.Robin Hirsch & Ian Hodkinson - 1997 - Journal of Symbolic Logic 62 (1):225-279.
    We consider the problem of finding and classifying representations in algebraic logic. This is approached by letting two players build a representation using a game. Homogeneous and universal representations are characterized according to the outcome of certain games. The Lyndon conditions defining representable relation algebras (for the finite case) and a similar schema for cylindric algebras are derived. Finite relation algebras with homogeneous representations are characterized by first order formulas. Equivalence games are defined, and are used to establish whether an (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Beyond Transcendentalism and Naturalization: A Categorial Framework for the Semiotic Phenomenology.Martina Properzi - 2019 - International Journal of Philosophy 7 (3):122.
    Download  
     
    Export citation  
     
    Bookmark  
  • Nonrepresentable relation algebras from groups.Hajnal Andréka, István Németi & Steven Givant - 2020 - Review of Symbolic Logic 13 (4):861-881.
    A series of nonrepresentable relation algebras is constructed from groups. We use them to prove that there are continuum many subvarieties between the variety of representable relation algebras and the variety of coset relation algebras. We present our main construction in terms of polygroupoids.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relation algebras of intervals.Robin Hirsch - 1996 - Artificial Intelligence 83 (2):267-295.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • An efficient relational deductive system for propositional non-classical logics.Andrea Formisano & Marianna Nicolosi-Asmundo - 2006 - Journal of Applied Non-Classical Logics 16 (3-4):367-408.
    We describe a relational framework that uniformly supports formalization and automated reasoning in varied propositional modal logics. The proof system we propose is a relational variant of the classical Rasiowa-Sikorski proof system. We introduce a compact graph-based representation of formulae and proofs supporting an efficient implementation of the basic inference engine, as well as of a number of refinements. Completeness and soundness results are shown and a Prolog implementation is described.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Coalgebraic Perspective on Logical Interpretations.M. A. Martins, A. Madeira & L. S. Barbosa - 2013 - Studia Logica 101 (4):783-825.
    In Computer Science stepwise refinement of algebraic specifications is a well-known formal methodology for rigorous program development. This paper illustrates how techniques from Algebraic Logic, in particular that of interpretation, understood as a multifunction that preserves and reflects logical consequence, capture a number of relevant transformations in the context of software design, reuse, and adaptation, difficult to deal with in classical approaches. Examples include data encapsulation and the decomposition of operations into atomic transactions. But if interpretations open such a new (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relation algebras from cylindric algebras, II.Robin Hirsch & Ian Hodkinson - 2001 - Annals of Pure and Applied Logic 112 (2-3):267-297.
    We prove, for each 4⩽ n ω , that S Ra CA n+1 cannot be defined, using only finitely many first-order axioms, relative to S Ra CA n . The construction also shows that for 5⩽n S Ra CA n is not finitely axiomatisable over RA n , and that for 3⩽m S Nr m CA n+1 is not finitely axiomatisable over S Nr m CA n . In consequence, for a certain standard n -variable first-order proof system ⊢ m (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Guest Editor’s Introduction: JvH100. [REVIEW]Irving H. Anellis - 2012 - Logica Universalis 6 (3-4):249-267.
    Download  
     
    Export citation  
     
    Bookmark  
  • Relevance logic and the calculus of relations.Roger D. Maddux - 2010 - Review of Symbolic Logic 3 (1):41-70.
    Sound and complete semantics for classical propositional logic can be obtained by interpreting sentences as sets. Replacing sets with commuting dense binary relations produces an interpretation that turns out to be sound but not complete for R. Adding transitivity yields sound and complete semantics for RM, because all normal Sugihara matrices are representable as algebras of binary relations.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • First-Order Axiomatisations of Representable Relation Algebras Need Formulas of Unbounded Quantifier Depth.Rob Egrot & Robin Hirsch - 2022 - Journal of Symbolic Logic 87 (3):1283-1300.
    Using a variation of the rainbow construction and various pebble and colouring games, we prove that RRA, the class of all representable relation algebras, cannot be axiomatised by any first-order relation algebra theory of bounded quantifier depth. We also prove that the class At(RRA) of atom structures of representable, atomic relation algebras cannot be defined by any set of sentences in the language of RA atom structures that uses only a finite number of variables.
    Download  
     
    Export citation  
     
    Bookmark