Switch to: References

Add citations

You must login to add citations.
  1. A minimalist two-level foundation for constructive mathematics.Maria Emilia Maietti - 2009 - Annals of Pure and Applied Logic 160 (3):319-354.
    We present a two-level theory to formalize constructive mathematics as advocated in a previous paper with G. Sambin.One level is given by an intensional type theory, called Minimal type theory. This theory extends a previous version with collections.The other level is given by an extensional set theory that is interpreted in the first one by means of a quotient model.This two-level theory has two main features: it is minimal among the most relevant foundations for constructive mathematics; it is constructive thanks (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Buying Logical Principles with Ontological Coin: The Metaphysical Lessons of Adding epsilon to Intuitionistic Logic.David DeVidi & Corey Mulvihill - 2017 - IfCoLog Journal of Logics and Their Applications 4 (2):287-312.
    We discuss the philosophical implications of formal results showing the con- sequences of adding the epsilon operator to intuitionistic predicate logic. These results are related to Diaconescu’s theorem, a result originating in topos theory that, translated to constructive set theory, says that the axiom of choice (an “existence principle”) implies the law of excluded middle (which purports to be a logical principle). As a logical choice principle, epsilon allows us to translate that result to a logical setting, where one can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The axiom of choice and the law of excluded middle in weak set theories.John L. Bell - 2008 - Mathematical Logic Quarterly 54 (2):194-201.
    A weak form of intuitionistic set theory WST lacking the axiom of extensionality is introduced. While WST is too weak to support the derivation of the law of excluded middle from the axiom of choice, we show that bee.ng up WST with moderate extensionality principles or quotient sets enables the derivation to go through.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • EM + Ext_ + AC~i~n~t is equivalent to AC~e~x~t.Jesper Carlström - 2004 - Mathematical Logic Quarterly 50 (3):236.
    It is well known that the extensional axiom of choice implies the law of excluded middle. We here prove that the converse holds as well if we have the intensional axiom of choice ACint, which is provable in Martin-Löf's type theory, and a weak extensionality principle, which is provable in Martin-Löf's extensional type theory. In particular, EM is equivalent to ACext in extensional type theory.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Types, Sets and Categories.John L. Bell - unknown
    This essay is an attempt to sketch the evolution of type theory from its beginnings early in the last century to the present day. Central to the development of the type concept has been its close relationship with set theory to begin with and later its even more intimate relationship with category theory. Since it is effectively impossible to describe these relationships (especially in regard to the latter) with any pretensions to completeness within the space of a comparatively short article, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Formal Zariski topology: positivity and points.Peter Schuster - 2006 - Annals of Pure and Applied Logic 137 (1-3):317-359.
    The topic of this article is the formal topology abstracted from the Zariski spectrum of a commutative ring. After recollecting the fundamental concepts of a basic open and a covering relation, we study some candidates for positivity. In particular, we present a coinductively generated positivity relation. We further show that, constructively, the formal Zariski topology cannot have enough points.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • EM + Ext− + ACint is equivalent to ACext.Jesper Carlström - 2004 - Mathematical Logic Quarterly 50 (3):236-240.
    It is well known that the extensional axiom of choice implies the law of excluded middle . We here prove that the converse holds as well if we have the intensional axiom of choice ACint, which is provable in Martin-Löf's type theory, and a weak extensionality principle , which is provable in Martin-Löf's extensional type theory. In particular, EM is equivalent to ACext in extensional type theory.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Choice principles and constructive logics.David Dedivi - 2004 - Philosophia Mathematica 12 (3):222-243.
    to constructive systems is significant for contemporary metaphysics. However, many are surprised by these results, having learned that the Axiom of Choice (AC) is constructively valid. Indeed, even among specialists there were, until recently, reasons for puzzlement-rival versions of Intuitionistic Type Theory, one where (AC) is valid, another where it implies classical logic. This paper accessibly explains the situation, puts the issues in a broader setting by considering other choice principles, and draws philosophical morals for the understanding of quantification, choice (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Development of Categorical Logic.John L. Bell - unknown
    5.5. Every topos is linguistic: the equivalence theorem.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Logic, Mathematics, Philosophy, Vintage Enthusiasms: Essays in Honour of John L. Bell.David DeVidi, Michael Hallett & Peter Clark (eds.) - 2011 - Dordrecht, Netherland: Springer.
    The volume includes twenty-five research papers presented as gifts to John L. Bell to celebrate his 60th birthday by colleagues, former students, friends and admirers. Like Bell’s own work, the contributions cross boundaries into several inter-related fields. The contributions are new work by highly respected figures, several of whom are among the key figures in their fields. Some examples: in foundations of maths and logic ; analytical philosophy, philosophy of science, philosophy of mathematics and decision theory and foundations of economics. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Pretopologies and a uniform presentation of sup-lattices, quantales and frames.Giulia Battilotti & Giovanni Sambin - 2006 - Annals of Pure and Applied Logic 137 (1-3):30-61.
    We introduce the notion of infinitary preorder and use it to obtain a predicative presentation of sup-lattices by generators and relations. The method is uniform in that it extends in a modular way to obtain a presentation of quantales, as “sup-lattices on monoids”, by using the notion of pretopology.Our presentation is then applied to frames, the link with Johnstone’s presentation of frames is spelled out, and his theorem on freely generated frames becomes a special case of our results on quantales.The (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Countable choice as a questionable uniformity principle.Peter M. Schuster - 2004 - Philosophia Mathematica 12 (2):106-134.
    Should weak forms of the axiom of choice really be accepted within constructive mathematics? A critical view of the Brouwer-Heyting-Kolmogorov interpretation, accompanied by the intention to include nondeterministic algorithms, leads us to subscribe to Richman's appeal for dropping countable choice. As an alternative interpretation of intuitionistic logic, we propose to renew dialogue semantics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Extensionality Versus Constructivity.Silvio Valentini - 2002 - Mathematical Logic Quarterly 48 (2):179-187.
    We analyze some extensions of Martin-Löf 's constructive type theory by means of extensional set constructors and we show that often the most natural requirements over them lead to classical logic or even to inconsistency.
    Download  
     
    Export citation  
     
    Bookmark   1 citation