Switch to: References

Add citations

You must login to add citations.
  1. The strength of Mac Lane set theory.A. R. D. Mathias - 2001 - Annals of Pure and Applied Logic 110 (1-3):107-234.
    Saunders Mac Lane has drawn attention many times, particularly in his book Mathematics: Form and Function, to the system of set theory of which the axioms are Extensionality, Null Set, Pairing, Union, Infinity, Power Set, Restricted Separation, Foundation, and Choice, to which system, afforced by the principle, , of Transitive Containment, we shall refer as . His system is naturally related to systems derived from topos-theoretic notions concerning the category of sets, and is, as Mac Lane emphasises, one that is (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Definability and Invariance.A. A. M. Rodrigues & N. C. A. da Costa - 2007 - Studia Logica 86 (1):1-30.
    In his thesis 'Para uma Teoria Geral dos Homomorfismos' (1944) the Portuguese mathematician José Sebastião e Silva constructed an abstract or generalized Galois theory, that is intimately linked to F. Klein’s Erlangen Program and that foreshadows some notions and results of today’s model theory; an analogous theory was independently worked out by M. Krasner in 1938. In this paper, we present a version of the theory making use of tools which were not at Silva’s disposal. At the same time, we (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Estruturas, Modelos e os Fundamentos da Abordagem Semântica.Jonas R. Becker Arenhart & Fernando T. F. Moraes - 2010 - Principia: An International Journal of Epistemology 14 (1):15-30.
    Neste artigo, a partir de tópicos presentes na obra de Newton C. A. da Costa, propomos uma fundamentação rigorosa para de uma possível formulação de teorias científicas através da abordagem semântica. Seguindo da Costa, primeiramente desenvolveremos uma teoria geral das estruturas; no contexto desta teoria de estruturas mostraremos como caracterizar linguagens formais como um tipo particular de estrutura, mais especificamente, como uma álgebra livre. Em seguida, discutiremos como associar uma linguagem a uma estrutura, com a qual poderemos formular axiomas que (...)
    Download  
     
    Export citation  
     
    Bookmark