Switch to: References

Citations of:

Game ideals

Annals of Pure and Applied Logic 158 (1-2):23-39 (2009)

Add citations

You must login to add citations.
  1. μ-clubs of P(λ): Paradise in heaven.Pierre Matet - 2025 - Annals of Pure and Applied Logic 176 (1):103497.
    Download  
     
    Export citation  
     
    Bookmark  
  • Applications of Pcf Theory to the Study of Ideals On.Pierre Matet - 2022 - Journal of Symbolic Logic 87 (3):967-994.
    Let$\kappa $be a regular uncountable cardinal, anda cardinal greater than or equal to$\kappa $. Revisiting a celebrated result of Shelah, we show that ifis close to$\kappa $and(= the least size of a cofinal subset of) is greater than, thencan be represented (in the sense of pcf theory) as a pseudopower. This can be used to obtain optimal results concerning the splitting problem. For example we show that ifand, then no$\kappa $-complete ideal onis weakly-saturated.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Non‐saturation of the non‐stationary ideal on Pκ (λ) with λ of countable cofinality.Pierre Matet - 2012 - Mathematical Logic Quarterly 58 (1-2):38-45.
    Given a regular uncountable cardinal κ and a cardinal λ > κ of cofinality ω, we show that the restriction of the non-stationary ideal on Pκ to the set of all a with equation image is not λ++-saturated . We actually prove the stronger result that there is equation image with |Q| = λ++ such that A∩B is a non-cofinal subset of Pκ for any two distinct members A, B of Q, where NGκ, λ denotes the game ideal on Pκ. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Guessing more sets.Pierre Matet - 2015 - Annals of Pure and Applied Logic 166 (10):953-990.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Ideals on $${P_{\kappa}(\lambda)}$$ P κ ( λ ) associated with games of uncountable length.Pierre Matet - 2015 - Archive for Mathematical Logic 54 (3-4):291-328.
    We study normal ideals on Pκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P_{\kappa} }$$\end{document} that are defined in terms of games of uncountable length.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Two‐cardinal diamond star.Pierre Matet - 2014 - Mathematical Logic Quarterly 60 (4-5):246-265.
    Our main results are: (A) It is consistent relative to a large cardinal that holds but fails. (B) If holds and are two infinite cardinals such that and λ carries a good scale, then holds. (C) If are two cardinals such that κ is λ‐Shelah and, then there is no good scale for λ.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Magidor function and diamond.Pierre Matet - 2011 - Journal of Symbolic Logic 76 (2):405 - 417.
    Let κ be a regular uncountable cardinal and λ be a cardinal greater than κ. We show that if 2 <κ ≤ M(κ, λ), then ◇ κ,λ holds, where M(κ, λ) equals $\lambda ^{\aleph }0$ if cf(λ) ≥ κ, and $(\lambda ^{+})^{\aleph _{0}}$ otherwise.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Non-saturation of the nonstationary ideal on Pκ(λ) in case κ ≤ cf (λ) < λ.Pierre Matet - 2012 - Archive for Mathematical Logic 51 (3-4):425-432.
    Given a regular cardinal κ > ω1 and a cardinal λ with κ ≤ cf (λ) < λ, we show that NSκ,λ | T is not λ+-saturated, where T is the set of all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a\in P_\kappa (\lambda)}$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${| a | = | a \cap \kappa|}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm cf} \big( {\rm sup} (a\cap\kappa)\big) (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Weak reflection principle, saturation of the nonstationary ideal on Ω 1 and diamonds.Víctor Torres-pérez - 2017 - Journal of Symbolic Logic 82 (2):724-736.
    We prove that WRP and saturation of the ideal NSω1together imply$\left\{ {a \in [\lambda ]^{\omega _1 } :{\text{cof}}\left( {{\text{sup}}\left( a \right)} \right) = \omega _1 } \right\}$, for every cardinalλwith cof(λ)≥ω2.
    Download  
     
    Export citation  
     
    Bookmark