Switch to: References

Add citations

You must login to add citations.
  1. Decoupling Topological Explanations from Mechanisms.Daniel Kostic & Kareem Khalifa - 2023 - Philosophy of Science 90 (2):245 - 268.
    We provide three innovations to recent debates about whether topological or “network” explanations are a species of mechanistic explanation. First, we more precisely characterize the requirement that all topological explanations are mechanistic explanations and show scientific practice to belie such a requirement. Second, we provide an account that unifies mechanistic and non-mechanistic topological explanations, thereby enriching both the mechanist and autonomist programs by highlighting when and where topological explanations are mechanistic. Third, we defend this view against some powerful mechanist objections. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Topological Explanations: An Opinionated Appraisal.Daniel Kostić - 2022 - In Insa Lawler, Kareem Khalifa & Elay Shech (eds.), Scientific Understanding and Representation: Modeling in the Physical Sciences. New York, NY: Routledge. pp. 96-115.
    This chapter provides a systematic overview of topological explanations in the philosophy of science literature. It does so by presenting an account of topological explanation that I (Kostić and Khalifa 2021; Kostić 2020a; 2020b; 2018) have developed in other publications and then comparing this account to other accounts of topological explanation. Finally, this appraisal is opinionated because it highlights some problems in alternative accounts of topological explanations, and also it outlines responses to some of the main criticisms raised by the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mechanist idealisation in systems biology.Dingmar van Eck & Cory Wright - 2020 - Synthese 199 (1-2):1555-1575.
    This paper adds to the philosophical literature on mechanistic explanation by elaborating two related explanatory functions of idealisation in mechanistic models. The first function involves explaining the presence of structural/organizational features of mechanisms by reference to their role as difference-makers for performance requirements. The second involves tracking counterfactual dependency relations between features of mechanisms and features of mechanistic explanandum phenomena. To make these functions salient, we relate our discussion to an exemplar from systems biological research on the mechanism for countering (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Non-mechanistic Option: Defending Dynamical Explanations.Russell Meyer - 2018 - British Journal for the Philosophy of Science 71 (3):959-985.
    This article demonstrates that non-mechanistic, dynamical explanations are a viable approach to explanation in the special sciences. The claim that dynamical models can be explanatory without reference to mechanisms has previously been met with three lines of criticism from mechanists: the causal relevance concern, the genuine laws concern, and the charge of predictivism. I argue, however, that these mechanist criticisms fail to defeat non-mechanistic, dynamical explanation. Using the examples of Haken et al.’s model of bimanual coordination, and Thelen et al.’s (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Toward Mechanism 2.1: A Dynamic Causal Approach.Wei Fang - 2021 - Philosophy of Science 88 (5):796-809.
    I propose a dynamic causal approach to characterizing the notion of a mechanism. Levy and Bechtel, among others, have pointed out several critical limitations of the new mechanical philosophy, and pointed in a new direction to extend this philosophy. Nevertheless, they have not fully fleshed out what that extended philosophy would look like. Based on a closer look at neuroscientific practice, I propose that a mechanism is a dynamic causal system that involves various components interacting, typically nonlinearly, with one another (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Getting over Atomism: Functional Decomposition in Complex Neural Systems.Daniel C. Burnston - 2021 - British Journal for the Philosophy of Science 72 (3):743-772.
    Functional decomposition is an important goal in the life sciences, and is central to mechanistic explanation and explanatory reduction. A growing literature in philosophy of science, however, has challenged decomposition-based notions of explanation. ‘Holists’ posit that complex systems exhibit context-sensitivity, dynamic interaction, and network dependence, and that these properties undermine decomposition. They then infer from the failure of decomposition to the failure of mechanistic explanation and reduction. I argue that complexity, so construed, is only incompatible with one notion of decomposition, (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Strategies of Explanatory Abstraction in Molecular Systems Biology.Nicholaos Jones - 2018 - Philosophy of Science 85 (5):955-968.
    I consider three explanatory strategies from recent systems biology that are driven by mathematics as much as mechanistic detail. Analysis of differential equations drives the first strategy; topological analysis of network motifs drives the second; mathematical theorems from control engineering drive the third. I also distinguish three abstraction types: aggregations, which simplify by condensing information; generalizations, which simplify by generalizing information; and structurations, which simplify by contextualizing information. Using a common explanandum as reference point—namely, the robust perfect adaptation of chemotaxis (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Systems Biology and Mechanistic Explanation.Ingo Brigandt, Sara Green & Maureen A. O'Malley - 2017 - In Stuart Glennan & Phyllis McKay Illari (eds.), The Routledge Handbook of Mechanisms and Mechanical Philosophy. Routledge. pp. 362-374.
    We address the question of whether and to what extent explanatory and modelling strategies in systems biology are mechanistic. After showing how dynamic mathematical models are actually required for mechanistic explanations of complex systems, we caution readers against expecting all systems biology to be about mechanistic explanations. Instead, the aim may be to generate topological explanations that are not standardly mechanistic, or to arrive at design principles that explain system organization and behaviour in general, but not specific mechanisms. These abstraction (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Sparks of New Metaphysics and the Limits of Explanatory Abstractions.Thomas Hauer - 2024 - Metaphysica 25 (1):15-39.
    Physical reality as an explanatory model is an abstraction of the mind. Every perceptual system is a user interface, like the dashboard of an aeroplane or the desktop of a computer. We do not see or otherwise perceive reality but only interface with reality. The user interface concept is a starting point for a critical dialogue with those epistemic theories that present themselves as veridical and take explanatory abstractions as ontological primitives. At the heart of any scientific model are assumptions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Design principles and mechanistic explanation.Wei Fang - 2022 - History and Philosophy of the Life Sciences 44 (4):1-23.
    In this essay I propose that what design principles in systems biology and systems neuroscience do is to present abstract characterizations of mechanisms, and thereby facilitate mechanistic explanation. To show this, one design principle in systems neuroscience, i.e., the multilayer perceptron, is examined. However, Braillard contends that design principles provide a sort of non-mechanistic explanation due to two related reasons: they are very general and describe non-causal dependence relationships. In response to this, I argue that, on the one hand, all (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Epistemic and Objective Possibility in Science.Ylwa Sjölin Wirling & Till Grüne-Yanoff - forthcoming - British Journal for the Philosophy of Science.
    Scientists regularly make possibility claims. While philosophers of science are well aware of the distinction between epistemic and objective notions of possibility, we believe that they often fail to apply this distinction in their analyses of scientific practices that employ modal concepts. We argue that heeding this distinction will help further progress in current debates in the philosophy of science, as it shows that the debaters talk about different things, rather than disagree on the same issue. We first discuss how (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The challenges of purely mechanistic models in biology and the minimum need for a 'mechanism-plus-X' framework.Sepehr Ehsani - 2018 - Dissertation, University College London
    Ever since the advent of molecular biology in the 1970s, mechanical models have become the dogma in the field, where a "true" understanding of any subject is equated to a mechanistic description. This has been to the detriment of the biomedical sciences, where, barring some exceptions, notable new feats of understanding have arguably not been achieved in normal and disease biology, including neurodegenerative disease and cancer pathobiology. I argue for a "mechanism-plus-X" paradigm, where mainstay elements of mechanistic models such as (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Causal Concepts Guiding Model Specification in Systems Biology.Dana Matthiessen - 2017 - Disputatio 9 (47):499-527.
    In this paper I analyze the process by which modelers in systems biology arrive at an adequate representation of the biological structures thought to underlie data gathered from high-throughput experiments. Contrary to views that causal claims and explanations are rare in systems biology, I argue that in many studies of gene regulatory networks modelers aim at a representation of causal structure. In addressing modeling challenges, they draw on assumptions informed by theory and pragmatic considerations in a manner that is guided (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Constraint‐Based Reasoning for Search and Explanation: Strategies for Understanding Variation and Patterns in Biology.Sara Green & Nicholaos Jones - 2016 - Dialectica 70 (3):343-374.
    Life scientists increasingly rely upon abstraction-based modeling and reasoning strategies for understanding biological phenomena. We introduce the notion of constraint-based reasoning as a fruitful tool for conceptualizing some of these developments. One important role of mathematical abstractions is to impose formal constraints on a search space for possible hypotheses and thereby guide the search for plausible causal models. Formal constraints are, however, not only tools for biological explanations but can be explanatory by virtue of clarifying general dependency-relations and patterning between (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Importance of Constraints and Control in Biological Mechanisms: Insights from Cancer Research.William Bechtel - 2018 - Philosophy of Science 85 (4):573-593.
    Research on diseases such as cancer reveals that primary mechanisms, which have been the focus of study by the new mechanists in philosophy of science, are often subject to control by other mechanisms. Cancer cells employ the same primary mechanisms as healthy cells but control them differently. I use cancer research to highlight just how widespread control is in individual cells. To provide a framework for understanding control, I reconceptualize mechanisms as imposing constraints on flows of free energy, with control (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Design principles as minimal models.Wei Fang - 2024 - Studies in History and Philosophy of Science Part A 105 (C):50-58.
    Download  
     
    Export citation  
     
    Bookmark  
  • Abstraction as an Autonomous Process in Scientific Modeling.Sim-Hui Tee - 2020 - Philosophia 48 (2):789-801.
    ion is one of the important processes in scientific modeling. It has always been implied that abstraction is an agent-centric activity that involves the cognitive processes of scientists in model building. I contend that there is an autonomous aspect of abstraction in many modeling activities. I argue that the autonomous process of abstraction is continuous with the agent-centric abstraction but capable of evolving independently from the modeler’s abstraction activity.
    Download  
     
    Export citation  
     
    Bookmark   2 citations