Switch to: References

Citations of:

God's lottery

Analysis 49 (4):223 (1989)

Add citations

You must login to add citations.
  1. Probability Modals and Infinite Domains.Adam Marushak - 2020 - Journal of Philosophical Logic 49 (5):1041-1055.
    Recent years have witnessed a proliferation of attempts to apply the mathematical theory of probability to the semantics of natural language probability talk. These sorts of “probabilistic” semantics are often motivated by their ability to explain intuitions about inferences involving “likely” and “probably”—intuitions that Angelika Kratzer’s canonical semantics fails to accommodate through a semantics based solely on an ordering of worlds and a qualitative ranking of propositions. However, recent work by Wesley Holliday and Thomas Icard has been widely thought to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Infinitesimal Probabilities.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2016 - British Journal for the Philosophy of Science 69 (2):509-552.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general. _1_ Introduction _2_ The Limits of Classical Probability Theory _2.1_ Classical probability functions _2.2_ Limitations _2.3_ Infinitesimals to the rescue? _3_ NAP Theory _3.1_ First four axioms of NAP _3.2_ Continuity and conditional probability _3.3_ The final axiom of NAP (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Countable additivity and the de finetti lottery.Paul Bartha - 2004 - British Journal for the Philosophy of Science 55 (2):301-321.
    De Finetti would claim that we can make sense of a draw in which each positive integer has equal probability of winning. This requires a uniform probability distribution over the natural numbers, violating countable additivity. Countable additivity thus appears not to be a fundamental constraint on subjective probability. It does, however, seem mandated by Dutch Book arguments similar to those that support the other axioms of the probability calculus as compulsory for subjective interpretations. These two lines of reasoning can be (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Waging War on Pascal’s Wager.Alan Hájek - 2003 - Philosophical Review 112 (1):27-56.
    Pascal’s Wager is simply too good to be true—or better, too good to be sound. There must be something wrong with Pascal’s argument that decision-theoretic reasoning shows that one must (resolve to) believe in God, if one is rational. No surprise, then, that critics of the argument are easily found, or that they have attacked it on many fronts. For Pascal has given them no dearth of targets.
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Uniform probability in cosmology.Sylvia Wenmackers - 2023 - Studies in History and Philosophy of Science Part A 101 (C):48-60.
    Download  
     
    Export citation  
     
    Bookmark  
  • Correction to John D. Norton “How to build an infinite lottery machine”.John D. Norton & Alexander R. Pruss - 2018 - European Journal for Philosophy of Science 8 (1):143-144.
    An infinite lottery machine is used as a foil for testing the reach of inductive inference, since inferences concerning it require novel extensions of probability. Its use is defensible if there is some sense in which the lottery is physically possible, even if exotic physics is needed. I argue that exotic physics is needed and describe several proposals that fail and at least one that succeeds well enough.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The supertask argument against countable additivity.Jon Pérez Laraudogoitia - 2014 - Philosophical Studies 168 (3):619-628.
    This paper proves that certain supertasks constitute counterexamples to countable additivity even in the frame of an objective (not subjective, à la de Finetti) conception of probability. The argument requires taking conditional probability as a primitive notion.
    Download  
     
    Export citation  
     
    Bookmark   1 citation