Switch to: References

Add citations

You must login to add citations.
  1. Primitive conditional probabilities, subset relations and comparative regularity.Joshua Thong - 2023 - Analysis 84 (3):547–555.
    Rational agents seem more confident in any possible event than in an impossible event. But if rational credences are real-valued, then there are some possible events that are assigned 0 credence nonetheless. How do we differentiate these events from impossible events then when we order events? de Finetti (1975), Hájek (2012) and Easwaran (2014) suggest that when ordering events, conditional credences and subset relations are as relevant as unconditional credences. I present a counterexample to all their proposals in this paper. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Weirdness of the World.Eric Schwitzgebel - 2024 - Princeton University Press.
    How all philosophical explanations of human consciousness and the fundamental structure of the cosmos are bizarre—and why that’s a good thing Do we live inside a simulated reality or a pocket universe embedded in a larger structure about which we know virtually nothing? Is consciousness a purely physical matter, or might it require something extra, something nonphysical? According to the philosopher Eric Schwitzgebel, it’s hard to say. In The Weirdness of the World, Schwitzgebel argues that the answers to these fundamental (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Uniform probability in cosmology.Sylvia Wenmackers - 2023 - Studies in History and Philosophy of Science Part A 101 (C):48-60.
    Download  
     
    Export citation  
     
    Bookmark  
  • Are Points (Necessarily) Unextended?Philip Ehrlich - 2022 - Philosophy of Science 89 (4):784-801.
    Since Euclid defined a point as “that which has no part” it has been widely assumed that points are necessarily unextended. It has also been assumed that this is equivalent to saying that points or, more properly speaking, degenerate segments, have length zero. We challenge these assumptions by providing models of Euclidean geometry where the points are extended despite the fact that the degenerate segments have null lengths, and observe that whereas the extended natures of the points are not recognizable (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Fair Countable Lotteries and Reflection.Casper Storm Hansen - 2022 - Acta Analytica 37 (4):595-610.
    The main conclusion is this conditional: If the principle of reflection is a valid constraint on rational credences, then it is not rational to have a uniform credence distribution on a countable outcome space. The argument is a variation on some arguments that are already in the literature, but with crucial differences. The conditional can be used for either a modus ponens or a modus tollens; some reasons for thinking that the former is most reasonable are given.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Borel-Kolmogorov Paradox Is Your Paradox Too: A Puzzle for Conditional Physical Probability.Alexander Meehan & Snow Zhang - 2021 - Philosophy of Science 88 (5):971-984.
    The Borel-Kolmogorov paradox is often presented as an obscure problem that certain mathematical accounts of conditional probability must face. In this article, we point out that the paradox arises in the physical sciences, for physical probability or chance. By carefully formulating the paradox in this setting, we show that it is a puzzle for everyone, regardless of one’s preferred probability formalism. We propose a treatment that is inspired by the approach that scientists took when confronted with these cases.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Characterization of Probability-based Dichotomous Belief Revision.Sven Ove Hansson - 2021 - Studia Logica 110 (2):511-543.
    This article investigates the properties of multistate top revision, a dichotomous model of belief revision that is based on an underlying model of probability revision. A proposition is included in the belief set if and only if its probability is either 1 or infinitesimally close to 1. Infinitesimal probabilities are used to keep track of propositions that are currently considered to have negligible probability, so that they are available if future information makes them more plausible. Multistate top revision satisfies a (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Are non-accidental regularities a cosmic coincidence? Revisiting a central threat to Humean laws.Aldo Filomeno - 2019 - Synthese 198 (6):5205-5227.
    If the laws of nature are as the Humean believes, it is an unexplained cosmic coincidence that the actual Humean mosaic is as extremely regular as it is. This is a strong and well-known objection to the Humean account of laws. Yet, as reasonable as this objection may seem, it is nowadays sometimes dismissed. The reason: its unjustified implicit assignment of equiprobability to each possible Humean mosaic; that is, its assumption of the principle of indifference, which has been attacked on (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • An Infinite Lottery Paradox.John D. Norton & Matthew W. Parker - 2022 - Axiomathes 32 (1):1-6.
    In a fair, infinite lottery, it is possible to conclude that drawing a number divisible by four is strictly less likely than drawing an even number; and, with apparently equal cogency, that drawing a number divisible by four is equally as likely as drawing an even number.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • How to Believe Long Conjunctions of Beliefs: Probability, Quasi-Dogmatism and Contextualism.Stefano Bonzio, Gustavo Cevolani & Tommaso Flaminio - 2021 - Erkenntnis 88 (3):965-990.
    According to the so-called Lockean thesis, a rational agent believes a proposition just in case its probability is sufficiently high, i.e., greater than some suitably fixed threshold. The Preface paradox is usually taken to show that the Lockean thesis is untenable, if one also assumes that rational agents should believe the conjunction of their own beliefs: high probability and rational belief are in a sense incompatible. In this paper, we show that this is not the case in general. More precisely, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Infinite Lotteries, Spinners, Applicability of Hyperreals†.Emanuele Bottazzi & Mikhail G. Katz - 2021 - Philosophia Mathematica 29 (1):88-109.
    We analyze recent criticisms of the use of hyperreal probabilities as expressed by Pruss, Easwaran, Parker, and Williamson. We show that the alleged arbitrariness of hyperreal fields can be avoided by working in the Kanovei–Shelah model or in saturated models. We argue that some of the objections to hyperreal probabilities arise from hidden biases that favor Archimedean models. We discuss the advantage of the hyperreals over transferless fields with infinitesimals. In Paper II we analyze two underdetermination theorems by Pruss and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Revising Probabilities and Full Beliefs.Sven Ove Hansson - 2020 - Journal of Philosophical Logic 49 (5):1005-1039.
    A new formal model of belief dynamics is proposed, in which the epistemic agent has both probabilistic beliefs and full beliefs. The agent has full belief in a proposition if and only if she considers the probability that it is false to be so close to zero that she chooses to disregard that probability. She treats such a proposition as having the probability 1, but, importantly, she is still willing and able to revise that probability assignment if she receives information (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Aggregation for potentially infinite populations without continuity or completeness.David McCarthy, Kalle M. Mikkola & J. Teruji Thomas - 2019 - arXiv:1911.00872 [Econ.TH].
    We present an abstract social aggregation theorem. Society, and each individual, has a preorder that may be interpreted as expressing values or beliefs. The preorders are allowed to violate both completeness and continuity, and the population is allowed to be infinite. The preorders are only assumed to be represented by functions with values in partially ordered vector spaces, and whose product has convex range. This includes all preorders that satisfy strong independence. Any Pareto indifferent social preorder is then shown to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Infinitesimal Probabilities.Sylvia Wenmackers - 2019 - In Richard Pettigrew & Jonathan Weisberg (eds.), The Open Handbook of Formal Epistemology. PhilPapers Foundation. pp. 199-265.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Conditional Probabilities.Kenny Easwaran - 2019 - In Richard Pettigrew & Jonathan Weisberg (eds.), The Open Handbook of Formal Epistemology. PhilPapers Foundation. pp. 131-198.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Precise Credences.Michael Titelbaum - 2019 - In Richard Pettigrew & Jonathan Weisberg (eds.), The Open Handbook of Formal Epistemology. PhilPapers Foundation. pp. 1-55.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Timothy Williamson’s Coin-Flipping Argument: Refuted Prior to Publication?Colin Howson - 2019 - Erkenntnis 86 (3):575-583.
    In a well-known paper, Timothy Williamson claimed to prove with a coin-flipping example that infinitesimal-valued probabilities cannot save the principle of Regularity, because on pain of inconsistency the event ‘all tosses land heads’ must be assigned probability 0, whether the probability function is hyperreal-valued or not. A premise of Williamson’s argument is that two infinitary events in that example must be assigned the same probability because they are isomorphic. It was argued by Howson that the claim of isomorphism fails, but (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Picturing the Infinite.Jeremy Gwiazda - manuscript
    The purpose of this note is to contrast a Cantorian outlook with a non-Cantorian one and to present a picture that provides support for the latter. In particular, I suggest that: i) infinite hyperreal numbers are the (actual, determined) infinite numbers, ii) ω is merely potentially infinite, and iii) infinitesimals should not be used in the di Finetti lottery. Though most Cantorians will likely maintain a Cantorian outlook, the picture is meant to motivate the obvious nature of the non-Cantorian outlook.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Symmetry arguments against regular probability: A reply to recent objections.Matthew W. Parker - 2019 - European Journal for Philosophy of Science 9 (1):1-21.
    A probability distribution is regular if it does not assign probability zero to any possible event. While some hold that probabilities should always be regular, three counter-arguments have been posed based on examples where, if regularity holds, then perfectly similar events must have different probabilities. Howson and Benci et al. have raised technical objections to these symmetry arguments, but we see here that their objections fail. Howson says that Williamson’s “isomorphic” events are not in fact isomorphic, but Howson is speaking (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Probability for the Revision Theory of Truth.Catrin Campbell-Moore, Leon Horsten & Hannes Leitgeb - 2019 - Journal of Philosophical Logic 48 (1):87-112.
    We investigate how to assign probabilities to sentences that contain a type-free truth predicate. These probability values track how often a sentence is satisfied in transfinite revision sequences, following Gupta and Belnap’s revision theory of truth. This answers an open problem by Leitgeb which asks how one might describe transfinite stages of the revision sequence using such probability functions. We offer a general construction, and explore additional constraints that lead to desirable properties of the resulting probability function. One such property (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Symmetry arguments against regular probability: A reply to recent objections.Matthew W. Parker - 2018 - European Journal for Philosophy of Science 9 (1):8.
    A probability distribution is regular if no possible event is assigned probability zero. While some hold that probabilities should always be regular, three counter-arguments have been posed based on examples where, if regularity holds, then perfectly similar events must have different probabilities. Howson (2017) and Benci et al. (2016) have raised technical objections to these symmetry arguments, but we see here that their objections fail. Howson says that Williamson’s (2007) “isomorphic” events are not in fact isomorphic, but Howson is speaking (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Surreal Decisions.Eddy Keming Chen & Daniel Rubio - 2020 - Philosophy and Phenomenological Research 100 (1):54-74.
    Although expected utility theory has proven a fruitful and elegant theory in the finite realm, attempts to generalize it to infinite values have resulted in many paradoxes. In this paper, we argue that the use of John Conway's surreal numbers shall provide a firm mathematical foundation for transfinite decision theory. To that end, we prove a surreal representation theorem and show that our surreal decision theory respects dominance reasoning even in the case of infinite values. We then bring our theory (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Limits in the Revision Theory: More Than Just Definite Verdicts.Catrin Campbell-Moore - 2019 - Journal of Philosophical Logic 48 (1):11-35.
    We present a new proposal for what to do at limits in the revision theory. The usual criterion for a limit stage is that it should agree with any definite verdicts that have been brought about before that stage. We suggest that one should not only consider definite verdicts that have been brought about but also more general properties; in fact any closed property can be considered. This more general framework is required if we move to considering revision theories for (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Gödel's Argument for Cantorian Cardinality.Matthew W. Parker - 2017 - Noûs 53 (2):375-393.
    On the first page of “What is Cantor's Continuum Problem?”, Gödel argues that Cantor's theory of cardinality, where a bijection implies equal number, is in some sense uniquely determined. The argument, involving a thought experiment with sets of physical objects, is initially persuasive, but recent authors have developed alternative theories of cardinality that are consistent with the standard set theory ZFC and have appealing algebraic features that Cantor's powers lack, as well as some promise for applications. Here we diagnose Gödel's (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Infinitesimal Probabilities.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2016 - British Journal for the Philosophy of Science 69 (2):509-552.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general. _1_ Introduction _2_ The Limits of Classical Probability Theory _2.1_ Classical probability functions _2.2_ Limitations _2.3_ Infinitesimals to the rescue? _3_ NAP Theory _3.1_ First four axioms of NAP _3.2_ Continuity and conditional probability _3.3_ The final axiom of NAP (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Fair Infinite Lotteries, Qualitative Probability, and Regularity.Nicholas DiBella - 2022 - Philosophy of Science 89 (4):824-844.
    A number of philosophers have thought that fair lotteries over countably infinite sets of outcomes are conceptually incoherent by virtue of violating countable additivity. In this article, I show that a qualitative analogue of this argument generalizes to an argument against the conceptual coherence of a much wider class of fair infinite lotteries—including continuous uniform distributions. I argue that this result suggests that fair lotteries over countably infinite sets of outcomes are no more conceptually problematic than continuous uniform distributions. Along (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Internality, transfer, and infinitesimal modeling of infinite processes†.Emanuele Bottazzi & Mikhail G. Katz - forthcoming - Philosophia Mathematica.
    ABSTRACTA probability model is underdetermined when there is no rational reason to assign a particular infinitesimal value as the probability of single events. Pruss claims that hyperreal probabilities are underdetermined. The claim is based upon external hyperreal-valued measures. We show that internal hyperfinite measures are not underdetermined. The importance of internality stems from the fact that Robinson’s transfer principle only applies to internal entities. We also evaluate the claim that transferless ordered fields may have advantages over hyperreals in probabilistic modeling. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Non-Measurability, Imprecise Credences, and Imprecise Chances.Yoaav Isaacs, Alan Hájek & John Hawthorne - 2021 - Mind 131 (523):892-916.
    – We offer a new motivation for imprecise probabilities. We argue that there are propositions to which precise probability cannot be assigned, but to which imprecise probability can be assigned. In such cases the alternative to imprecise probability is not precise probability, but no probability at all. And an imprecise probability is substantially better than no probability at all. Our argument is based on the mathematical phenomenon of non-measurable sets. Non-measurable propositions cannot receive precise probabilities, but there is a natural (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Underdetermination of infinitesimal probabilities.Alexander R. Pruss - 2018 - Synthese 198 (1):777-799.
    A number of philosophers have attempted to solve the problem of null-probability possible events in Bayesian epistemology by proposing that there are infinitesimal probabilities. Hájek and Easwaran have argued that because there is no way to specify a particular hyperreal extension of the real numbers, solutions to the regularity problem involving infinitesimals, or at least hyperreal infinitesimals, involve an unsatisfactory ineffability or arbitrariness. The arguments depend on the alleged impossibility of picking out a particular hyperreal extension of the real numbers (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Triangulating non-archimedean probability.Hazel Brickhill & Leon Horsten - 2018 - Review of Symbolic Logic 11 (3):519-546.
    We relate Popper functions to regular and perfectly additive such non-Archimedean probability functions by means of a representation theorem: every such non-Archimedean probability function is infinitesimally close to some Popper function, and vice versa. We also show that regular and perfectly additive non-Archimedean probability functions can be given a lexicographic representation. Thus Popper functions, a specific kind of non-Archimedean probability functions, and lexicographic probability functions triangulate to the same place: they are in a good sense interchangeable.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Conditional Probability Is Not Countably Additive.Dmitri Gallow - 2018
    I argue for a connection between two debates in the philosophy of probability. On the one hand, there is disagreement about conditional probability. Is it to be defined in terms of unconditional probability, or should we instead take conditional probability as the primitive notion? On the other hand, there is disagreement about how additive probability is. Is it merely finitely additive, or is it additionally countably additive? My thesis is that, if conditional probability is primitive, then it is not countably (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Weintraub’s response to Williamson’s coin flip argument.Matthew W. Parker - 2021 - European Journal for Philosophy of Science 11 (3):1-21.
    A probability distribution is regular if it does not assign probability zero to any possible event. Williamson argued that we should not require probabilities to be regular, for if we do, certain “isomorphic” physical events must have different probabilities, which is implausible. His remarks suggest an assumption that chances are determined by intrinsic, qualitative circumstances. Weintraub responds that Williamson’s coin flip events differ in their inclusion relations to each other, or the inclusion relations between their times, and this can account (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Comparative infinite lottery logic.Matthew W. Parker - 2020 - Studies in History and Philosophy of Science Part A 84:28-36.
    As an application of his Material Theory of Induction, Norton (2018; manuscript) argues that the correct inductive logic for a fair infinite lottery, and also for evaluating eternal inflation multiverse models, is radically different from standard probability theory. This is due to a requirement of label independence. It follows, Norton argues, that finite additivity fails, and any two sets of outcomes with the same cardinality and co-cardinality have the same chance. This makes the logic useless for evaluating multiverse models based (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A classical way forward for the regularity and normalization problems.Alexander R. Pruss - 2021 - Synthese 199 (5-6):11769-11792.
    Bayesian epistemology has struggled with the problem of regularity: how to deal with events that in classical probability have zero probability. While the cases most discussed in the literature, such as infinite sequences of coin tosses or continuous spinners, do not actually come up in scientific practice, there are cases that do come up in science. I shall argue that these cases can be resolved without leaving the realm of classical probability, by choosing a probability measure that preserves “enough” regularity. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Better Way of Framing Williamson’s Coin-Tossing Argument, but It Still Does Not Work.Colin Howson - 2019 - Philosophy of Science 86 (2):366-374.
    Timothy Williamson claimed to prove with a coin-tossing example that hyperreal probabilities cannot save the principle of regularity. A premise of his argument is that two specified infinitary events must be assigned the same probability because, he claims, they are isomorphic. But as has been pointed out, they are not isomorphic. A way of framing Williamson’s argument that does not make it depend on the isomorphism claim is in terms of shifts in Bernoulli processes, the usual mathematical model of sequential (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Basis for AGM Revision in Bayesian Probability Revision.Sven Ove Hansson - 2023 - Journal of Philosophical Logic 52 (6):1535-1559.
    In standard Bayesian probability revision, the adoption of full beliefs (propositions with probability 1) is irreversible. Once an agent has full belief in a proposition, no subsequent revision can remove that belief. This is an unrealistic feature, and it also makes probability revision incompatible with belief change theory, which focuses on how the set of full beliefs is modified through both additions and retractions. This problem in probability theory can be solved in a model that (i) lets the codomain of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Non-classical probabilities invariant under symmetries.Alexander R. Pruss - 2021 - Synthese 199 (3-4):8507-8532.
    Classical real-valued probabilities come at a philosophical cost: in many infinite situations, they assign the same probability value—namely, zero—to cases that are impossible as well as to cases that are possible. There are three non-classical approaches to probability that can avoid this drawback: full conditional probabilities, qualitative probabilities and hyperreal probabilities. These approaches have been criticized for failing to preserve intuitive symmetries that can be preserved by the classical probability framework, but there has not been a systematic study of the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Herkansing voor infinitesimalen?Sylvia Wenmackers - 2018 - Algemeen Nederlands Tijdschrift voor Wijsbegeerte 110 (4):491-510.
    A New Chance for Infinitesimals? This article discusses the connection between the Zenonian paradox of magnitude and probability on infinite sample spaces. Two important premises in the Zenonian argument are: the Archimedean axiom, which excludes infinitesimal magnitudes, and perfect additivity. Standard probability theory uses real numbers that satisfy the Archimedean axiom, but it rejects perfect additivity. The additivity requirement for real-valued probabilities is limited to countably infinite collections of mutually incompatible events. A consequence of this is that there exists no (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Axioms for Type-Free Subjective Probability.Cezary Cieśliński, Leon Horsten & Hannes Leitgeb - 2024 - Review of Symbolic Logic 17 (2):493-508.
    We formulate and explore two basic axiomatic systems of type-free subjective probability. One of them explicates a notion of finitely additive probability. The other explicates a concept of infinitely additive probability. It is argued that the first of these systems is a suitable background theory for formally investigating controversial principles about type-free subjective probability.
    Download  
     
    Export citation  
     
    Bookmark   1 citation