Switch to: References

Add citations

You must login to add citations.
  1. An Algebraic Approach to Canonical Formulas: Intuitionistic Case.Guram Bezhanishvili - 2009 - Review of Symbolic Logic 2 (3):517.
    We introduce partial Esakia morphisms, well partial Esakia morphisms, and strong partial Esakia morphisms between Esakia spaces and show that they provide the dual description of (∧, →) homomorphisms, (∧, →, 0) homomorphisms, and (∧, →, ∨) homomorphisms between Heyting algebras, thus establishing a generalization of Esakia duality. This yields an algebraic characterization of Zakharyaschev’s subreductions, cofinal subreductions, dense subreductions, and the closed domain condition. As a consequence, we obtain a new simplified proof (which is algebraic in nature) of Zakharyaschev’s (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Characteristic Formulas of Partial Heyting Algebras.Alex Citkin - 2013 - Logica Universalis 7 (2):167-193.
    The goal of this paper is to generalize a notion of characteristic (or Jankov) formula by using finite partial Heyting algebras instead of the finite subdirectly irreducible algebras: with every finite partial Heyting algebra we associate a characteristic formula, and we study the properties of these formulas. We prove that any intermediate logic can be axiomatized by such formulas. We further discuss the correlations between characteristic formulas of finite partial algebras and canonical formulas. Then with every well-connected Heyting algebra we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Decidability results in non-classical logics.Dov M. Gabbay - 1975 - Annals of Mathematical Logic 8 (3):237-295.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Admissible Rules and the Leibniz Hierarchy.James G. Raftery - 2016 - Notre Dame Journal of Formal Logic 57 (4):569-606.
    This paper provides a semantic analysis of admissible rules and associated completeness conditions for arbitrary deductive systems, using the framework of abstract algebraic logic. Algebraizability is not assumed, so the meaning and significance of the principal notions vary with the level of the Leibniz hierarchy at which they are presented. As a case study of the resulting theory, the nonalgebraizable fragments of relevance logic are considered.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Kripke completeness of some intermediate predicate logics with the axiom of constant domain and a variant of canonical formulas.Tatsuya Shimura - 1993 - Studia Logica 52 (1):23 - 40.
    For each intermediate propositional logicJ, J * denotes the least predicate extension ofJ. By the method of canonical models, the strongly Kripke completeness ofJ *+D(=x(p(x)q)xp(x)q) is shown in some cases including:1. J is tabular, 2. J is a subframe logic. A variant of Zakharyashchev's canonical formulas for intermediate logics is introduced to prove the second case.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On the extension of intuitionistic propositional logic with Kreisel-Putnam's and Scott's schemes.Pierluigi Minari - 1986 - Studia Logica 45 (1):55-68.
    LetSKP be the intermediate prepositional logic obtained by adding toI (intuitionistic p.l.) the axiom schemes:S = (( ) ) (Scott), andKP = ()()() (Kreisel-Putnam). Using Kripke's semantics, we prove:1) SKP has the finite model property; 2) SKP has the disjunction property. In the last section of the paper we give some results about Scott's logic S = I+S.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • An algebraic approach to subframe logics. Intuitionistic case.Guram Bezhanishvili & Silvio Ghilardi - 2007 - Annals of Pure and Applied Logic 147 (1):84-100.
    We develop duality between nuclei on Heyting algebras and certain binary relations on Heyting spaces. We show that these binary relations are in 1–1 correspondence with subframes of Heyting spaces. We introduce the notions of nuclear and dense nuclear varieties of Heyting algebras, and prove that a variety of Heyting algebras is nuclear iff it is a subframe variety, and that it is dense nuclear iff it is a cofinal subframe variety. We give an alternative proof that every subframe variety (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Finite axiomatization for some intermediate logics.I. Janioka-Żuk - 1980 - Studia Logica 39 (4):415-423.
    LetN. be the set of all natural numbers, and letD n * = {k N k|n} {0} wherek¦n if and only ifn=k.x f or somexN. Then, an ordered setD n * = D n *, n, wherex ny iffx¦y for anyx, yD n *, can easily be seen to be a pseudo-boolean algebra.In [5], V.A. Jankov has proved that the class of algebras {D n * nB}, whereB =, {k N is finitely axiomatizable.
    Download  
     
    Export citation  
     
    Bookmark  
  • A separable axiomatization of the Gabbay–de Jongh logics.Yokomizo Kyohei - 2017 - Logic Journal of the IGPL 25 (3):365-380.
    Download  
     
    Export citation  
     
    Bookmark  
  • Characteristic Inference Rules.Alex Citkin - 2015 - Logica Universalis 9 (1):27-46.
    The goal of this paper is to generalize a notion of quasi-characteristic inference rule in the following way: with every finite partial algebra we associate a rule, and study the properties of these rules. We prove that any equivalential logic can be axiomatized by such rules. We further discuss the correlations between characteristic rules of the finite partial algebras and canonical rules. Then, with every algebra we associate a set of characteristic rules that correspond to each finite partial subalgebra of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Admissible rules in the implication–negation fragment of intuitionistic logic.Petr Cintula & George Metcalfe - 2010 - Annals of Pure and Applied Logic 162 (2):162-171.
    Uniform infinite bases are defined for the single-conclusion and multiple-conclusion admissible rules of the implication–negation fragments of intuitionistic logic and its consistent axiomatic extensions . A Kripke semantics characterization is given for the structurally complete implication–negation fragments of intermediate logics, and it is shown that the admissible rules of this fragment of form a PSPACE-complete set and have no finite basis.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Intermediate logics with the same disjunctionless fragment as intuitionistic logic.Plerluigi Minari - 1986 - Studia Logica 45 (2):207 - 222.
    Given an intermediate prepositional logic L, denote by L –d its disjuctionless fragment. We introduce an infinite sequence {J n}n1 of propositional formulas, and prove:(1)For any L: L –d =I –d (I=intuitionistic logic) if and only if J n L for every n 1.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Some results concerning finite model separability of propositional calculi.Ronald Harrop - 1976 - Studia Logica 35 (2):179 - 189.
    Download  
     
    Export citation  
     
    Bookmark