Switch to: References

Citations of:

Books Received [Book Review]

Studia Logica 59 (1):143-146 (1997)

Add citations

You must login to add citations.
  1. Structural realism and quantum gravity.Tian Yu Cao - 2006 - In Dean Rickles, Steven French & Juha T. Saatsi (eds.), The Structural Foundations of Quantum Gravity. Oxford, GB: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Category theory: The language of mathematics.Elaine Landry - 1999 - Philosophy of Science 66 (3):27.
    In this paper I argue that category theory ought to be seen as providing the language for mathematical discourse. Against foundational approaches, I argue that there is no need to reduce either the content or structure of mathematical concepts and theories to the constituents of either the universe of sets or the category of categories. I assign category theory the role of organizing what we say about the content and structure of both mathematical concepts and theories. Insofar, then, as the (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Elaine Landry,* ed. Categories for the Working Philosopher. [REVIEW]Neil Barton - 2020 - Philosophia Mathematica 28 (1):95-108.
    LandryElaine, * ed. Categories for the Working Philosopher. Oxford University Press, 2017. ISBN 978-0-19-874899-1 ; 978-0-19-106582-8. Pp. xiv + 471.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mac Lane, Bourbaki, and Adjoints: A Heteromorphic Retrospective.David Ellerman - manuscript
    Saunders Mac Lane famously remarked that "Bourbaki just missed" formulating adjoints in a 1948 appendix (written no doubt by Pierre Samuel) to an early draft of Algebre--which then had to wait until Daniel Kan's 1958 paper on adjoint functors. But Mac Lane was using the orthodox treatment of adjoints that only contemplates the object-to-object morphisms within a category, i.e., homomorphisms. When Samuel's treatment is reconsidered in view of the treatment of adjoints using heteromorphisms or hets (object-to-object morphisms between objects in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Exactification of the Monoid of Primitive Recursive Functions.Joachim Lambek & Philip Scott - 2005 - Studia Logica 81 (1):1-18.
    We study the monoid of primitive recursive functions and investigate a onestep construction of a kind of exact completion, which resembles that of the familiar category of modest sets, except that the partial equivalence relations which serve as objects are recursively enumerable. As usual, these constructions involve the splitting of symmetric idempotents.
    Download  
     
    Export citation  
     
    Bookmark  
  • Is the Enhanced Indispensability Argument a Useful Tool in the Hands of Platonists?Vladimir Drekalović - 2019 - Philosophia 47 (4):1111-1126.
    Platonists in mathematics endeavour to prove the truthfulness of the proposal about the existence of mathematical objects. However, there have not been many explicit proofs of this proposal. One of the explicit ones is doubtlessly Baker’s Enhanced Indispensability Argument, formulated as a sort of modal syllogism. We aim at showing that the purpose of its creation – the defence of Platonist viewpoint – was not accomplished. Namely, the second premise of the Argument was imprecisely formulated, which gave space for various (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Mathematical Descriptions of Truth and Change.Joseph Kouneiher & Newton da Costa - 2020 - Foundations of Science 25 (3):647-670.
    Our aim in this paper is to replace the old concept of truth in mathematics, based on the Set Structure provided with idea of true and false characterized by the presence of a characteric function \, by a mathematical structures founded on the idea of Topos, the triple structure \\}\) and the notion of Gradual Truth or Steps from the truth. Our motivations is to understand the mathematical structures underlying the emergence’s mechanism and phenomena. We think that this approach could (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Theory and Reality : Metaphysics as Second Science.Staffan Angere - unknown
    Theory and Reality is about the connection between true theories and the world. A mathematical framefork for such connections is given, and it is shown how that framework can be used to infer facts about the structure of reality from facts about the structure of true theories, The book starts with an overview of various approaches to metaphysics. Beginning with Quine's programmatic "On what there is", the first chapter then discusses the perils involved in going from language to metaphysics. It (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The prospects of unlimited category theory: Doing what remains to be done.Michael Ernst - 2015 - Review of Symbolic Logic 8 (2):306-327.
    The big question at the end of Feferman is: Is it possible to find a foundation for unlimited category theory? I show that the answer is no by showing that unlimited category theory is inconsistent.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Reconstructing Hilbert to construct category theoretic structuralism.Elaine Landry - unknown
    This paper considers the nature and role of axioms from the point of view of the current debates about the status of category theory and, in particular, in relation to the “algebraic” approach to mathematical structuralism. My aim is to show that category theory has as much to say about an algebraic consideration of meta-mathematical analyses of logical structure as it does about mathematical analyses of mathematical structure, without either requiring an assertory mathematical or meta-mathematical background theory as a “foundation”, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the validity of the definition of a complement-classifier.Mariusz Stopa - 2020 - Philosophical Problems in Science 69:111-128.
    It is well-established that topos theory is inherently connected with intuitionistic logic. In recent times several works appeared concerning so-called complement-toposes, which are allegedly connected to the dual to intuitionistic logic. In this paper I present this new notion, some of the motivations for it, and some of its consequences. Then, I argue that, assuming equivalence of certain two definitions of a topos, the concept of a complement-classifier is, at least in general and within the conceptual framework of category theory, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation